Skip to main content

Advertisement

Log in

HAGE, a cancer/testis antigen with potential for melanoma immunotherapy: identification of several MHC class I/II HAGE-derived immunogenic peptides

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

There remains a need to identify novel epitopes of potential tumour target antigens for use in immunotherapy of cancer. Here, several melanoma tissues and cell lines but not normal tissues were found to overexpress the cancer-testis antigen HAGE at the mRNA and protein level. We identified a HAGE-derived 15-mer peptide containing a shorter predicted MHC class I-binding sequence within a class II-binding sequence. However, only the longer peptide was found to be both endogenously processed and immunogenic for T cells in transgenic mice in vivo, as well as for human T cells in vitro. A different class I-binding peptide, not contained within a longer class II sequence, was subsequently found to be both immunogenic and endogenously processed in transgenic mice, as was a second class II epitope. These novel HAGE-derived epitopes may contribute to the range of immunotherapeutic targets for use in cancer vaccination programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adams SP, Sahota SS, Mijovic A, Czepulkowski B, Padua RA, Mufti GJ, Guinn BA (2002) Frequent expression of HAGE in chronic myeloid leukemias. Leukaemia 16:2238–2242

    Article  CAS  Google Scholar 

  2. Assudani DP, Horton RB, Mathieu MG, McArdle SE, Rees RC (2006) The role of CD4+ T cell help in cancer immunity and the formulation of novel cancer vaccines. Cancer Immunol Immunother 56:70–80

    Article  PubMed  Google Scholar 

  3. Cordin O, Banroques J, Tanner NK, Linder P (2006) The DEAD-box protein family of RNA helicases. Gene 367:17–37

    Article  PubMed  CAS  Google Scholar 

  4. Disis ML, Gralow JR, Bernhard H, Hand SL, Rubin WD, Cheever MA (1996) Peptide-based, but not whole protein, vaccines elicit immunity to HER-2/neu, oncogenic self-protein. J Immunol 156:3151–3158

    PubMed  CAS  Google Scholar 

  5. Dissanayake SK, Tuera N, Ostrand-Rosenberg S (2005) Presentation of endogenously synthesized MHC class II-restricted epitopes by MHC class II cancer vaccines is independent of transporter associated with Ag processing and the proteasome. J Immunol 174:1811–1819

    PubMed  CAS  Google Scholar 

  6. Firat H, Garcia-Pons F, Tourdot S, Pascolo S, Scardino A, Garcia Z, Michel ML, Jack RW, Jung G, Kosmatopoulos K, Mateo L, Suhrbier A, et al (1999) H-2 class I knockout, HLA-A2.1-transgenic mice: a versatile animal model for preclinical evaluation of antitumor immunotherapeutic strategies. Eur J Immunol 29:3112–3121

    Article  PubMed  CAS  Google Scholar 

  7. Knights AJ, Zaniou A, Rees RC, Pawelec G, Muller L (2002) Prediction of an HLA-DR-binding peptide derived from Wilms’ tumour 1 protein and demonstration of in vitro immunogenicity of WT1(124–138)-pulsed dendritic cells generated according to an optimised protocol. Cancer Immunol Immunother 51:271–281

    Article  PubMed  CAS  Google Scholar 

  8. Lotze MT, Rees RC (2004) Identifying biomarkers and surrogates of tumors (cancer biometrics): correlation with immunotherapies and immune cells. Cancer Immunol Immunother 53:256–261

    Article  PubMed  CAS  Google Scholar 

  9. Martelange V, De Smet C, De Plaen E, Lurquin C, Boon T (2000) Identification on a human sarcoma of two new genes with tumour-specific expression. Cancer Res 60:3848–3855

    PubMed  CAS  Google Scholar 

  10. Miles AK, Matharoo-Ball B, Li G, Ahmad M, Rees RC (2006) The identification of human tumour antigens: current status and future developments. Cancer Immunol Immunother 55:996–1003

    Article  PubMed  CAS  Google Scholar 

  11. Mine T, Sato Y, Noguchi M, Sasatomi T, Gouhara R, Tsuda N, Tanaka S, Shomura H, Katagiri K, Rikimaru T, Shichijo S, Kamura T, et al (2004) Humoral responses to peptides correlate with overall survival in advanced cancer patients vaccinated with peptides based on pre-existing, peptide-specific cellular responses. Clin Cancer Res 10:929–937

    Article  PubMed  CAS  Google Scholar 

  12. Morgan RA, Dudley ME, Wunderlich JR, Hughes MS, Yang JC, Sherry RM, Royal RE, Topalian SL, Kammula US, Restifo NP, Zheng Z, Nahvi A (2006) Cancer regression in patients after transfer of genetically engineered lymphocytes. Science 314:126–129

    Article  PubMed  CAS  Google Scholar 

  13. Nagel H, Laskawi R, Eiffert H, Schlott T (2003) Analysis of the tumour suppressor genes, FHIT and WT-1, and the tumour rejection genes, BAGE, GAGE-1/2, HAGE, MAGE-1, and MAGE-3, in benign and malignant neoplasms of the salivary glands. J Clin Mol Path 56:226–231

    Article  CAS  Google Scholar 

  14. Novellino L, Castelli C, Parmiani G (2005) A listing of human tumour antigens recognized by T cells: March 2004 update. Cancer Immunol Immunother 54:187–207

    Article  PubMed  CAS  Google Scholar 

  15. Rojas JM, McArdle SE, Horton RB, Bell M, Mian S, Li G, Ali SA, Rees RC (2004) Peptide immunisation of HLA-DR-transgenic mice permits the identification of a novel HLA-DRbeta1*0101- and HLA-DRbeta1*0401-restricted epitope from p53. Cancer Immunol Immunother 54:243–253

    Article  PubMed  Google Scholar 

  16. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, et al (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321–327

    Article  PubMed  CAS  Google Scholar 

  17. Saxova P, Buus S, Brunak S, Kesmir C (2003) Predicting proteasomal cleavage sites: a comparison of available methods. Int Immunol 15:781–787

    Article  PubMed  CAS  Google Scholar 

  18. Scanlan MJ, Simpson AJ, Old LJ (2004) The cancer/testis genes: review, standardisation and commentary. Cancer Immunol 4:1–15

    Google Scholar 

  19. van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van den Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647

    Article  PubMed  Google Scholar 

  20. Wilson BJ, Bates GJ, Nicol SM, Gregory DJ, Perkins ND, Fuller-Pace FV (2004) The p68 and p72 DEAD box RNA helicases interact with HDAC1 and repress transcription in a promoter-specific manner. BMC Mol Biol 6:5–11

    Google Scholar 

  21. Yang L, Lin C, Liu ZR (2005) Phosphorylations of DEAD box p68 RNA helicase are associated with cancer development and cell proliferation. Mol Cancer Res 3:355–363

    Article  PubMed  CAS  Google Scholar 

  22. Yee C, Thompson JA, Roche P, Byrd DR, Lee PP, Piepkorn M, Kenyon K, Davis MM, Riddell SR, Greenberg PD (2000) Melanocyte destruction after antigen-specific immunotherapy of melanoma: direct evidence of T-cell mediated vitiligo. J Exp Med 192:1637–1644

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by European Commission Contracts LSHC-CT-2004-503306 (ENACT) and ESTDAB (QLRI-CT-2000-01325), the John and Lucille van Geest Foundation and the Deutsche Forschungsgemeinschaft (DFG-SFB-685-B4). We are also grateful to Robert Davy, Stephen Reeder and Lilly Wedel for excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie E. B. McArdle.

Additional information

M.G. Mathieu and A.J. Knights are joint first authors and have contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mathieu, M.G., Knights, A.J., Pawelec, G. et al. HAGE, a cancer/testis antigen with potential for melanoma immunotherapy: identification of several MHC class I/II HAGE-derived immunogenic peptides. Cancer Immunol Immunother 56, 1885–1895 (2007). https://doi.org/10.1007/s00262-007-0331-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-007-0331-2

Keywords

Navigation