Skip to main content

Advertisement

Log in

Dendritic cell based antitumor vaccination: impact of functional indoleamine 2,3-dioxygenase expression

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background

Recent reports have demonstrated that the enzyme indoleamine 2,3-dioxygenase (IDO) is upregulated in human dendritic cells (DCs) upon in vitro maturation. IDO is supposed to convey immunosuppressive effects by degrading the essential amino acid tryptophan, thereby downregulating T-cell functions. Hence, we evaluated IDO expression in DC preparations used for therapeutic DC vaccination and its in vivo effects.

Patients, methods and results

IDO expression was detected by real-time-PCR in a series of human clinical grade DCs (n = 28) prior to vaccination of advanced melanoma patients (n = 11). These analyses revealed an intra- and interpersonal variation in IDO mRNA levels. IDO was strongly upregulated in human DCs on RNA and on protein level upon in vitro maturation by Interleukin-1β (IL-1β), tumour necrosis factor-α (TNF-α), Interleukin-6 (IL-6) and Prostaglandin E2 (PGE2) over a time course of 24 h. The enzymatic activity of induced IDO was demonstrated by measuring tryptophan degradation. Moreover, in biopsies obtained 24 h after application of the DC vaccine a prominent infiltrate of IDO-positive cells was observed by immunohistochemistry. The inflammatory infiltrate of these sites stained positive for the transcription factor Forkhead box P3 (FoxP3), suggesting an IDO-mediated induction of regulatory T-cells. All analysed melanoma patients (n = 11) receiving DC based immunotherapy exhibited rapid disease progression with a short overall survival due to advanced tumour stage.

Conclusion

The presented observations suggest a potential clinical relevance of IDO expression in DC-based therapeutic vaccines via the attraction or induction of FoxP3+ T-cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

APC:

Antigen presenting cell

CTL:

Cytotoxic T-lymphocyte

DC:

Dendritic cell

FoxP3:

Forkhead box P3

GM-CSF:

Granulocyte monocyte colony stimulating factor

IDO:

Indoleamine 2,3-dioxygenase

IL:

Interleukin

PBMCs:

Peripheral blood mononuclear cells

PGE2:

Prostaglandin E2

Treg:

Regulatory T-cell

TGF-β:

Transforming growth factor-β

TNF-α:

Tumour necrosis factor-α

1MT:

1-Methyl-tryptophan

References

  1. Steinbrink K, Jonuleit H, Muller G, Schuler G, Knop J, Enk AH (1999) Interleukin-10-treated human dendritic cells induce a melanoma-antigen-specific anergy in CD8(+) T cells resulting in a failure to lyse tumour cells. Blood 93:1634–1642

    PubMed  CAS  Google Scholar 

  2. Uyttenhove C, Pilotte L, Theate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ (2003) Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 9:1269–1274

    Article  PubMed  CAS  Google Scholar 

  3. Grohmann U, Fallarino F, Puccetti P (2003) Tolerance, DCs and tryptophan: much ado about IDO. Trends Immunol 24:242–248

    Article  PubMed  CAS  Google Scholar 

  4. Lee GK, Park HJ, Macleod M, Chandler P, Munn DH, Mellor AL (2002) Tryptophan deprivation sensitizes activated T cells to apoptosis prior to cell division. Immunology 107:452–460

    Article  PubMed  CAS  Google Scholar 

  5. Terness P, Bauer TM, Rose L, Dufter C, Watzlik A, Simon H, Opelz G (2002) Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J Exp Med 19(196):447–457

    Article  Google Scholar 

  6. Faunce DE, Terajewicz A, Stein-Streilein J (2004) Cutting edge: in vitro-generated tolerogenic APC induce CD8+ T regulatory cells that can suppress ongoing experimental autoimmune encephalomyelitis. J Immunol 172:1991–1995

    PubMed  CAS  Google Scholar 

  7. Gupta SL, Carlin JM, Pyati P, Dai W, Pfefferkorn ER, Murphy MJ Jr (1994) Antiparasitic and antiproliferative effects of indoleamine 2,3-dioxygenase enzyme expression in human fibroblasts. Infect Immunol 62:2277–2284

    CAS  Google Scholar 

  8. Munn DH, Zhou M, Attwood JT, Bondarev I, Conway SJ, Marshall B, Brown C, Mellor AL (1998) Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281:1191–1193

    Article  PubMed  CAS  Google Scholar 

  9. Bauer TM, Jiga LP, Chuang JJ, Randazzo M, Opelz G, Terness P (2005) Studying the immunosuppressive role of indoleamine 2,3-dioxygenase: tryptophan metabolites suppress rat allogeneic T-cell responses in vitro and in vivo. Transpl Int 18:95–100

    Article  PubMed  CAS  Google Scholar 

  10. Sakurai K, Zou JP, Tschetter JR, Ward JM, Shearer GM (2002) Effect of indoleamine 2,3-dioxygenase on induction of experimental autoimmune encephalomyelitis. J Neuroimmunol 129:186–196

    Article  PubMed  CAS  Google Scholar 

  11. Munn DH, Mellor AL (2004) IDO and tolerance to tumors. Trends Mol Med 10:15–18

    Article  PubMed  CAS  Google Scholar 

  12. Harlin H, Kuna TV, Peterson AC, Meng Y, Gajewski TF (2006) Tumour progression despite massive influx of activated CD8(+) T cells in a patient with malignant melanoma ascites. Cancer Immunol Immunother 55:1185–1197

    Article  PubMed  CAS  Google Scholar 

  13. Lee JH, Torisu-Itakara H, Cochran AJ, Kadison A, Huynh Y, Morton DL, Essner R (2005) Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin Cancer Res 11:107–112

    PubMed  CAS  Google Scholar 

  14. Braun D, Longman RS, Albert ML (2005) A two-step induction of indoleamine 2,3 dioxygenase (IDO) activity during dendritic-cell maturation. Blood 106:2375–2381

    Article  PubMed  CAS  Google Scholar 

  15. Bergwelt-Baildon MS, Popov A, Saric T, Chemnitz J, Classen S, Stoffel MS, Fiore F, Roth U, Beyer M, Debey S, Wickenhauser C, Hanisch FG, Schultze JL (2006) CD25 and indoleamine 2,3-dioxygenase are up-regulated by prostaglandin E2 and expressed by associated-associated dendritic cells in vivo: additional mechanisms of T-cell inhibition. Blood 108:228–237

    Article  Google Scholar 

  16. Otto K, Andersen MH, Eggert A, Keikavoussi P, Pedersen LO, Rath JC, Bock M, Brocker EB, Straten PT, Kampgen E, Becker JC (2005) Lack of toxicity of therapy-induced T cell responses against the universal tumour antigen survivin. Vaccine 23:884–889

    Article  PubMed  CAS  Google Scholar 

  17. Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Brocker EB, Grabbe S, Rittgen W, Edler L, Sucker A, Zimpfer-Rechner C, Berger T, Kamarashev J, Burg G, Jonuleit H, Tuttenberg A, Becker JC, Keikavoussi P, Kampgen E, Schuler G (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 17:563–570

    Article  PubMed  CAS  Google Scholar 

  18. Thurner B, Roder C, Dieckmann D, Heuer M, Kruse M, Glaser A, Keikavoussi P, Kampgen E, Bender A, Schuler G (1999) Generation of large numbers of fully mature and stable dendritic cells from leukapheresis products for clinical application. J Immunol Methods 223:1–15

    Article  PubMed  CAS  Google Scholar 

  19. Munn DH, Sharma MD, Lee JR, Jhaver KG, Johnson TS, Keskin DB, Marshall B, Chandler P, Antonia SJ, Burgess R, Slingluff CL Jr, Mellor AL (2002) Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 297:1867–1870

    Article  PubMed  CAS  Google Scholar 

  20. Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, Sakaguchi S (2006) Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int Immunol 18:1197–1209

    Article  PubMed  CAS  Google Scholar 

  21. Zou W (2006) Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol 6:295–307

    Article  PubMed  CAS  Google Scholar 

  22. Zou L, Barnett B, Safah H, Larussa VF, Evdemon-Hogan M, Mottram P, Wei S, David O, Curiel TJ, Zou W (2004) Bone marrow is a reservoir for CD4+CD25+ regulatory T cells that traffic through CXCL12/CXCR4 signals. Cancer Res 64:8451–8455

    Article  PubMed  CAS  Google Scholar 

  23. Mellor AL, Munn DH (2004) IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat Rev Immunol 4:762–774

    Article  PubMed  CAS  Google Scholar 

  24. Gilliet M, Liu YJ (2002) Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 195:695–704

    Article  PubMed  CAS  Google Scholar 

  25. Banerjee DK, Dhodapkar MV, Matayeva E, Steinman RM, Dhodapkar KM (2006) Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood 108:2655–2661

    Article  PubMed  CAS  Google Scholar 

  26. Thomas SR, Salahifar H, Mashima R, Hunt NH, Richardson DR, Stocker R (2001) Antioxidants inhibit indoleamine 2,3-dioxygenase in IFN-gamma-activated human macrophages: posttranslational regulation by pyrrolidine dithiocarbamate. J Immunol 166:6332–6340

    PubMed  CAS  Google Scholar 

  27. Terentis AC, Thomas SR, Takikawa O, Littlejohn TK, Truscott RJ, Armstrong RS, Yeh SR, Stocker R (2002) The heme environment of recombinant human indoleamine 2,3-dioxygenase. Structural properties and substrate–ligand interactions. J Biol Chem 277:15788–15794

    Article  PubMed  CAS  Google Scholar 

  28. Friberg M, Jennings R, Alsarraj M, Dessureault S, Cantor A, Extermann M, Mellor AL, Munn DH, Antonia SJ (2002) Indoleamine 2,3-dioxygenase contributes to tumour cell evasion of T cell-mediated rejection. Int J Cancer 101:151–155

    Article  PubMed  CAS  Google Scholar 

  29. Munn DH, Sharma MD, Hou D, Baban B, Lee JR, Antonia SJ, Messina JL, Chandler P, Koni PA, Mellor AL (2004) Expression of indoleamine 2,3-dioxygenase by plasmacytoid dendritic cells in draining-draining lymph nodes. J Clin Invest 114:280–290

    Article  PubMed  CAS  Google Scholar 

  30. von Bubnoff D, Bausinger H, Matz H, Koch S, Hacker G, Takikawa O, Bieber T, Hanau D, de la SH (2004) Human epidermal langerhans cells express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. J Invest Dermatol 123:298–304

    Article  Google Scholar 

  31. Hwang SL, Chung NP, Chan JK, Lin CL (2005) Indoleamine 2, 3-dioxygenase (IDO) is essential for dendritic cell activation and chemotactic responsiveness to chemokines. Cell Res 15:167–175

    Article  PubMed  CAS  Google Scholar 

  32. Jonuleit H, Schmitt E, Steinbrink K, Enk AH (2001) Dendritic cells as a tool to induce anergic and regulatory T cells. Trends Immunol 22:394–400

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly thank Eva Baumann and Claudia Siedel, Department of Dermatology, University of Wuerzburg, Germany, for their excellent technical assistance and Claudia S. Kauczok for help with the immunohistochemical analysis. Furthermore, we thank Ulrich R. Hengge, University of Duesseldorf, Department of Dermatology, Germany, for providing the IDO antibody for immunohistochemistry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juergen C. Becker.

Additional information

David Schrama and Juergen C. Becker contributed equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wobser, M., Voigt, H., Houben, R. et al. Dendritic cell based antitumor vaccination: impact of functional indoleamine 2,3-dioxygenase expression. Cancer Immunol Immunother 56, 1017–1024 (2007). https://doi.org/10.1007/s00262-006-0256-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0256-1

Keywords

Navigation