Skip to main content

Advertisement

Log in

Adjuvant properties of listeriolysin O protein in a DNA vaccination strategy

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The use of infectious agents as vaccine adjuvants has shown utility in both prophylactic and therapeutic vaccinations. Listeria monocytogenes has been used extensively as a vaccine vehicle due to its ability to initiate both CD4+ and CD8+ immune responses. Previous work from this laboratory has used transgenic Listeria to deliver vaccine constructs. A chimeric protein composed of tumor antigen and a non-hemolytic variant of the Listeria protein, listeriolysin O (LLO), has demonstrated effective tumor protection beyond that of antigen alone expressed in the same system. To address the question of how fusion with LLO improves vaccine efficacy, we constructed a number of DNA plasmid vaccines to isolate this effect in the absence of other endogenous Listeria effects. Here we have analyzed the ability of these vaccines to induce the regression of previously established tumors. A vaccine strategy using DNA vaccines bearing the tumor antigen either alone or in combination with LLO in addition to plasmids encoding MIP-1α and GM-CSF was examined. Further, LLO was used either as a chimera or in a bicistronic construct to address the importance of fusion between these elements. Notably, the strategies employing both chimeric and bicistronic vaccines were effective in reducing tumor burden suggesting that LLO can act as an adjuvant that does not require fusion with the tumor antigen to mediate its effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LLO:

Listeriolysin O

GM-CSF:

Granulocytes macrophage-colony stimulating factor

MIP-1α:

Macrophage inflammatory protein-1α

DC:

Dendritic cells

References

  1. Hoption Cann SA, van Netten JP, van Netten C (2003) Dr. William Coley and tumour regression: a place in history or in the future. Postgrad Med J 79:672

    PubMed  CAS  Google Scholar 

  2. Pamer EG (2004) Immune responses to Listeria monocytogenes. Nat Rev Immunol 4:812

    Article  PubMed  CAS  Google Scholar 

  3. Pan ZK, Weiskirch LM, Paterson Y (1999) Regression of established B16F10 melanoma with a recombinant Listeria monocytogenes vaccine. Cancer Res 59:5264

    PubMed  CAS  Google Scholar 

  4. Yoshimura K, Jain A, Allen HE, Laird LS, Chia CY, Ravi S, Brockstedt DG, Giedlin MA, Bahjat KS, Leong ML, Slansky JE, Cook DN, Dubensky TW, Pardoll DM, Schulick RD (2006) Selective targeting of antitumor immune responses with engineered live-attenuated Listeria monocytogenes. Cancer Res 66:1096

    Article  PubMed  CAS  Google Scholar 

  5. Bosch FX, Manos MM, Munoz N, Sherman M, Jansen AM, Peto J, Schiffman MH, Moreno V, Kurman R, Shah KV (1995) Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) study group. J Natl Cancer Inst 87:796

    Article  PubMed  CAS  Google Scholar 

  6. Choo CK, Rorke EA, Eckert RL (1994) Differentiation-independent constitutive expression of the human papillomavirus type 16 E6 and E7 oncogenes in the CaSki cervical tumour cell line. J Gen Virol 75:1139

    PubMed  CAS  Google Scholar 

  7. Lin KY, Guarnieri FG, Staveley-O’Carroll KF, Levitsky HI, August JT, Pardoll DM, Wu TC (1996) Treatment of established tumors with a novel vaccine that enhances major histocompatibility class II presentation of tumor antigen. Cancer Res 56:21

    PubMed  CAS  Google Scholar 

  8. Gunn GR, Zubair A, Peters C, Pan ZK, Wu TC, Paterson Y (2001) Two Listeria monocytogenes vaccine vectors that express different molecular forms of human papilloma virus-16 (HPV-16) E7 induce qualitatively different T cell immunity that correlates with their ability to induce regression of established tumors immortalized by HPV-16. J Immunol 167:6471

    PubMed  CAS  Google Scholar 

  9. Lamikanra A, Pan ZK, Isaacs SN, Wu TC, Paterson Y (2001) Regression of established human papillomavirus type 16 (HPV-16) immortalized tumors in vivo by vaccinia viruses expressing different forms of HPV-16 E7 correlates with enhanced CD8(+) T-cell responses that home to the tumor site. J Virol 75:9654

    Article  PubMed  CAS  Google Scholar 

  10. Peng X, Hussain SF, Paterson Y (2004) The ability of two Listeria monocytogenes vaccines targeting human papillomavirus-16 E7 to induce an antitumor response correlates with myeloid dendritic cell function. J Immunol 172:6030

    PubMed  CAS  Google Scholar 

  11. Hussain SF, Paterson Y (2005) What is needed for effective anti-tumor immunotherapy? Lessons learned using Listeria monocytogenes as a live vector for HPV associated tumors. Cancer Immunol Immunother 54:577

    Article  PubMed  CAS  Google Scholar 

  12. Sewell DA, Shahabi V, Gunn GR, Pan ZK, Dominiecki ME, Paterson Y (2004) Recombinant Listeria vaccines containing PEST sequences are potent immune adjuvants for the tumor-associated antigen human papillomavirus-16 E7. Cancer Res 64:8821

    Article  PubMed  CAS  Google Scholar 

  13. Nagata T, Aoshi T, Uchijima M, Suzuki M, Koide Y (2004) Cytotoxic T-lymphocyte-, and helper T-lymphocyte-oriented DNA vaccination. DNA Cell Biol 23:93

    Article  PubMed  CAS  Google Scholar 

  14. Donnelly JJ, Ulmer JB, Shiver JW, Liu MA (1997) DNA vaccines. Annu Rev Immunol 15:617

    Article  PubMed  CAS  Google Scholar 

  15. Ou-Yang P, Hwang LH, Tao MH, Chiang BL, Chen DS (2001) Co-delivery of GM-CSF gene enhances the immune responses of hepatitis C viral core protein-expressing DNA vaccine: role of dendritic cells. J Med Virol 66:320

    Article  CAS  Google Scholar 

  16. Barouch DH, Santra S, Tenner-Racz K, Racz P, Kuroda MJ, Schmitz JE, Jackson SS, Lifton MA, Freed DC, Perry HC, Davies ME, Shiver JW, Letvin NL (2002) Potent CD4+ T cell responses elicited by a bicistronic HIV-1 DNA vaccine expressing gp120 and GM-CSF. J Immunol 168:562

    PubMed  CAS  Google Scholar 

  17. Haddad D, Ramprakash J, Sedegah M, Charoenvit Y, Baumgartner R, Kumar S, Hoffman SL, Weiss WR (2000) Plasmid vaccine expressing granulocyte-macrophage colony stimulating factor attracts infiltrates including immature dendritic cells into injected muscles. J Immunol 165:3772

    PubMed  CAS  Google Scholar 

  18. McKay PF, Barouch DH, Santra S, Sumida SM, Jackson SS, Gorgone DA, Lifton MA, Letvin NL (2004) Recruitment of different subsets of antigen-presenting cells selectively modulates DNA vaccine-elicited CD4+ and CD8+ T lymphocyte responses. Eur J Immunol 34:1011

    Article  PubMed  CAS  Google Scholar 

  19. Choo AY, Choo DK, Kim JJ, Weiner DB (2005) DNA vaccination in immunotherapy of cancer. Cancer Treat Res 123:137

    Article  PubMed  CAS  Google Scholar 

  20. Kim TW, Lee JH, He L, Boyd DA, Hung CF, Wu TC (2005) DNA vaccines employing intracellular targeting strategies and a strategy to prolong dendritic cell life generate a higher number of CD8+ memory T cells and better long-term antitumor effects compared with a DNA prime-vaccinia boost regimen. Hum Gene Ther 16:26

    Article  PubMed  CAS  Google Scholar 

  21. Kim TW, Hung CF, Juang J, He L, Kim TW, Armstrong DK, Pai SI, Chen PJ, Lin CT, Boyd DA, Wu TC (2004) Comparison of HPV DNA vaccines employing intracellular targeting strategies. Gene Ther 11:1011

    Article  PubMed  CAS  Google Scholar 

  22. Kim TW, Hung CF, Boyd DA, He L, Lin CT, Kaiserman D, Bird PI, Wu TC (2004) Enhancement of DNA vaccine potency by co-administration of a tumor antigen gene and DNA encoding serine protease inhibitor-6. Cancer Res 64:400

    Article  PubMed  CAS  Google Scholar 

  23. Kim TW, Hung CF, Boyd D, Juang J, He L, Kim JW, Hardwick JM, Wu TC (2003) Enhancing DNA vaccine potency by combining a strategy to prolong dendritic cell life with intracellular targeting strategies. J Immunol 171:2970

    PubMed  CAS  Google Scholar 

  24. Cheng WF, Hung CF, Chai CY, Hsu KF, He L, Ling M, Wu TC (2001) Tumor-specific immunity and antiangiogenesis generated by a DNA vaccine encoding calreticulin linked to a tumor antigen. J Clin Invest 108:669

    Article  PubMed  CAS  Google Scholar 

  25. Chen CH, Wang TL, Hung CF, Yang Y, Young RA, Pardoll DM, Wu TC (2000) Enhancement of DNA vaccine potency by linkage of antigen gene to an HSP70 gene. Cancer Res 60:1035

    PubMed  CAS  Google Scholar 

  26. Decatur AL, Portnoy DA (2000) A PEST-like sequence in listeriolysin O essential for Listeria monocytogenes pathogenicity. Science 290:992

    Article  PubMed  CAS  Google Scholar 

  27. Lety MA, Frehel C, Dubail I, Beretti JL, Kayal S, Berche P, Charbit A (2001) Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence in Listeria monocytogenes. Mol Microbiol 39:1124

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant number CA69632 from the National Institute of Health and American Cancer Society grant number TURSG LIB-01-168-01. Yvonne Paterson wishes to disclose that she has a financial interest in Advaxis Inc., a vaccine and therapeutic company that has licensed or has an option to license all patents from the University of Pennsylvania that concern the use of Listeria or listerial products as vaccines.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Paterson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, X., Treml, J. & Paterson, Y. Adjuvant properties of listeriolysin O protein in a DNA vaccination strategy. Cancer Immunol Immunother 56, 797–806 (2007). https://doi.org/10.1007/s00262-006-0240-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0240-9

Keywords

Navigation