Skip to main content

Advertisement

Log in

The distinct effects of three tandem repeats of C3d in the immune responses against tumor-associated antigen hCGβ by DNA immunization

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Several examples have shown that C3d3, when fused to a corresponding antigen, had a strong adjuvant effect on certain specific antibody production. In a previous study, we attempted to prove that this was the case of the human chorionic gonadotrophin β chain (hCGβ)-induced immunity following DNA vaccination. However, we found that C3d3 when fused to hCGβ inhibited rather than enhanced the antigen-specific immune response. In the present study, using hCGβ DNA vaccine preparations, we demonstrated that C3d3 inhibited the antigen-specific humoral antibody response and several other immune responses, such as the hCGβ specific lymphoproliferation. Such inhibitory effects of C3d3 were not related to the expression level of the target protein, the gender of the test mice, or the vector used. Contrastingly, C3d3 fused with the envelope protein of hepatitis B virus (PreS2/S) used as a control system resulted in the enhancement of both humoral and cell-mediated antigen-specific immune responses against HBV-preS2/S, which was consistent with other groups’ adjuvant-effect findings. We further showed that the mechanisms involved in the inhibitory effect of C3d3 might be possible due to impairing the function of antigen presenting B lymphocytes and reducing the expression of transcription factors (T-bet and GATA-3) and cytokine IL-4. Collectively, unlike its usual expected adjuvant function, the fusion of C3d3 with the tumor-associated antigen hCGβ was found to inhibit both humoral and cell-mediated antigen-specific immune responses. These findings indicate that research concerning tumor immune escapes and vaccine designs require further extensive attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

hCGβ:

The β chain of human chorionic gonadotrophin

HbsAg:

Hepatitis B virus surface antigen

TAA:

Tumor-associated antigen

References

  1. Isaacs NW, Cystine knots (1995) Curr Opin Struct Biol 5:391–395

    Article  PubMed  CAS  Google Scholar 

  2. Marcillac I, Troalen F, Bidart JM, Ghillani P, Ribrag V, Escudier B, Malassagne B, Droz JP, Lhomme C, Rougier P (1992) Free human chorionic gonadotropin beta subunit in gonadal and nongonadal neoplasms. Cancer Res 52:3901–3907

    PubMed  CAS  Google Scholar 

  3. Rau CS, Lin JW, Liang CL, Lee TC, Chen HJ, Lu K (2002) Production of human chorionic gonadotropin-beta subunit associated with an osteolytic meningioma. Case report. J Neurosurg 97:197–199

    CAS  Google Scholar 

  4. Melmed S, Braunstein GD (1983) Human chorionic gonadotropin stimulates proliferation of Nb 2 rat lymphoma cells. J Clin Endocrinol Metab 56:1068–1070

    Article  PubMed  CAS  Google Scholar 

  5. Triozzi PL, Stevens VC (1999) Human chorionic gonadotropin as a target for cancer vaccines. Oncol Rep 6:7–17

    PubMed  CAS  Google Scholar 

  6. Dangles V, Halberstam I, Scardino A, Choppin J, Wertheimer M, Richon S, Quelvennec E, Moirand R, Guillet JG, Kosmatopoulos K, Bellet D, Zeliszewski D (2002) Tumor-associated antigen human chorionic gonadotropin beta contains numerous antigenic determinants recognized by in vitro-induced CD8+ and CD4+ T lymphocytes. Cancer Immunol Immunother 50:673–681

    Article  PubMed  CAS  Google Scholar 

  7. Geissler M, Wands G, Gesien A, de la Monte S, Bellet D, Wands JR (1997) Genetic immunization with the free human chorionic gonadotropin beta subunit elicits cytotoxic T lymphocyte responses and protects against tumor formation in mice. Lab Invest 76:859–871

    PubMed  CAS  Google Scholar 

  8. Dempsey PW, Allison MED, Akkaraju S, Goodnow CC, Fearon DT (1996) C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271:348–350

    Article  PubMed  CAS  Google Scholar 

  9. Ross TM, Xu Y, Bright RA, Robinson HL (2000) C3d enhancement of antibodies to Hemagglutinin accelerates protection against influenza virus challenge. Nat Immunol 1:127–131

    Article  PubMed  CAS  Google Scholar 

  10. Mitchell JA, Green TD, Bright RA, Ross TM (2003) Induction of heterosubtypic immunity to influenza A virus using a DNA vaccine expressing hemagglutinin-C3d fusion proteins. Vaccine 21:902–914

    Article  PubMed  CAS  Google Scholar 

  11. Watanabe I, Ross TM, Tamura S, Ichinohe T, Ito S, Takahashi H, Sawa H, Chiba J, Kurata T, Sata T, Hasegawa H (2003) Protection against influenza virus infection by intranasal administration of C3d-fused hemagglutinin. Vaccine 21:4532–4538

    Article  PubMed  CAS  Google Scholar 

  12. Green TD, Newton BP, Rota PA, Xu Y, Robinson HL, Ross TM (2001) C3d enhancement of neutralizing antibodies to measles hemagglutinin. Vaccine 20:242–248

    Article  PubMed  CAS  Google Scholar 

  13. Ross TM, Xu Y, Green TD, Montefiori DC, Robinson HL (2001) Enhanced avidity maturation of antibody to human immunodeficiency virus envelope: DNA vaccination with gp120-C3d fusion proteins. AIDS Res Hum Retroviruses 17:829–835

    Article  PubMed  CAS  Google Scholar 

  14. Liu F, Mboudjeka I, Shen S, Chou TH, Wang S, Ross TM, Lu S (2004) Independent but not synergistic enhancement to the immunogenicity of DNA vaccine expressing HIV-1 gp120 glycoprotein by codon optimization and C3d fusion in a mouse model. Vaccine 22:1764–1772

    Article  PubMed  CAS  Google Scholar 

  15. Green TD, Montefiori DC, Ross TM (2003) Enhancement of antibodies to the human immunodeficiency virus type 1 envelope by using the molecular adjuvant C3d. J Virol 77:2046–2055

    Article  PubMed  CAS  Google Scholar 

  16. Wang L, Sunyer JO, Bello LJ (2004) Fusion to C3d enhances the immunogenicity of the E2 glycoprotein of type 2 bovine viral diarrhea virus. J Virol 78:1616–1622

    Article  PubMed  CAS  Google Scholar 

  17. Suradhat S, Braun RP, Lewis PJ, Babiuk LA, van Drunen Littel-van den Hurk S, Griebel PJ, Baca-Estrada ME (2001) Fusion of C3d molecule with bovine rotavirus VP7 or bovine herpesvirus type 1 glycoprotein D inhibits immune responses following DNA immunization. Vet Immunol Immunopathol 83:79–92

    Article  PubMed  CAS  Google Scholar 

  18. Bergmann-Leitner ES, Scheiblhofer S, Weiss R, Duncan EH, Leitner WW, Chen D, Angov E, Khan F, Williams JL, Winter DB, Thalhamer J, Lyon JA, Tsokos GC (2005) C3d binding to the circumsporozoite protein carboxy-terminus deviates immunity against malaria. Int Immunol 17:245–255

    Article  PubMed  CAS  Google Scholar 

  19. Gor DO, Ding X, Li Q, Greenspan NS (2006) Genetic fusion of three tandem copies of murine C3d sequences to diphtheria toxin fragment B elicits a decreased fragment B-specific antibody response. Immunol Lett 102:38–49

    Article  PubMed  CAS  Google Scholar 

  20. Terrazzini N, Hannesdottir S, Delves PJ, Lund T (2004). DNA immunization with plasmids expressing hCGβ-chimeras. Vaccine 22:2146–2153

    Article  PubMed  CAS  Google Scholar 

  21. Wang LX, Xu W, Guan QD, Chu YW, Wang Y, Xiong SD (2004) Contribution of C3d-P28 repeats to enhancement of immune responses against HBV-preS2/S induced by gene immunization. World J Gastroenterol 10:2072–2077

    PubMed  CAS  Google Scholar 

  22. Summer B, Sander CA, Przybilla B, Thomas P (2001) Molecular analysis of T-cell clonality with concomitant specific T-cell proliferation in vitro in nickel-allergic individuals. Allergy 56:767–770

    Article  PubMed  CAS  Google Scholar 

  23. McKay PF, Barouch DH, Santra S, Sumida SM, Jackson SS, Gorgone DA, Lifton MA, Letvin NL (2004) Recruitment of different subsets of antigen-presenting cells selectively modulates DNA vaccine-elicited CD4+ and CD8+ T lymphocyte responses. Eur J Immunol 34:1011–1020

    Article  PubMed  CAS  Google Scholar 

  24. Giovarelli M, Santoni A, Forni G (1985) Alloantigen-activated lymphocytes from mice bearing a spontaneous “non-immunogenic” adenocarcinoma inhibit its growth by recruiting host immunoreactivity. J Immunol 135:3596–3603

    PubMed  CAS  Google Scholar 

  25. Yu S, Xia M, Xu W, Chu Y, Wang Y, Xiong S (2005) All-trans retinoic acid biases immune response induced by DNA vaccine in a Th2 direction. Vaccine 23:5160–5167

    Article  PubMed  CAS  Google Scholar 

  26. Lobell A, Weissert R, Eltayeb S, de Graaf KL, Wefer J, Storch MK, Lassmann H, Wigzell H, Olsson T (2003) Suppressive DNA vaccination in myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis involves a T1-biased immune response. J. Immunol 70:1806–1813

    Google Scholar 

  27. Farrar JD, Ouyang W, Lohning M, Assenmacher M, Radbruch A, Kanagawa O, Murphy KM (2001) An instructive component in T helper cell type 2 (Th2) development mediated by GATA-3. J Exp Med 193:643–649

    Article  PubMed  CAS  Google Scholar 

  28. Szabo SJ, Kim ST, Costa GL, Zhang X, Fathman CG, Glimcher LH (2000) A novel transcription factor, T-bet, directs Th1 lineage commitment. Cell 100:655–669

    Article  PubMed  CAS  Google Scholar 

  29. Li DJ, Wang HM, Li L, Zhao XR, Wang MY, Zhu Y, Meng Y, Yuan MM (2003) Gene fusion of molecular adjuvant C3d to hCGbeta enhances the anti-hCGbeta antibody response in DNA immunization. J Reprod Immunol 60:129–141

    Article  PubMed  CAS  Google Scholar 

  30. Wang XL, Li DJ, Yuan MM, Yu M, Yao XY. (2004) Enhancement of humoral immunity to the hCG beta protein antigen by fusing a molecular adjuvant C3d3. J Reprod Immunol 63:97–110

    Article  PubMed  CAS  Google Scholar 

  31. Tedder TF, Inaoki M, Sato S (1997) The CD19–CD21 complex regulates signal transduction thresholds governing humoral immunity and autoimmunity. Immunity 6:107–118

    Article  PubMed  CAS  Google Scholar 

  32. Fearon DT, Carter RH (1995) The CD19/CR2/TAPA-1 complex of B lymphocytes: linking natural to acquired immunity. Annu Rev Immunol 13:127–149

    Article  PubMed  CAS  Google Scholar 

  33. Prodeus AP, Goerg S, Shen LM, Pozdnyakova OO, Chu L, Alicot EM, Goodnow CC, Carroll MC (1998) A critical role for complement in maintenance of self-tolerance. Immunity 9:721–731

    Article  PubMed  CAS  Google Scholar 

  34. Lee Y, Haas KM, Gor DO, Ding X, Karp DR, Greenspan NS, Poe JC, Tedder TF (2005) Complement component C3d-antigen complexes can either augment or inhibit B lymphocyte activation and humoral immunity in mice depending on the degree of CD21/CD19 complex engagement. J Immunol 175:8011–8023

    PubMed  CAS  Google Scholar 

  35. Suradhat S, Braun RP, Lewis PJ, Babiuk LA, van Drunen Littel-van den Hurk S, Griebel PJ, Baca-Estrada ME (2001) Fusion of C3d molecule with bovine rotavirus VP7 or bovine herpesvirus type 1 glycoprotein D inhibits immune responses following DNA immunization. Vet Immunol Immunopathol 83:79–92

    Article  PubMed  CAS  Google Scholar 

  36. Mongini PKA, Highet PF, Inman JK (1995) Human B cell activation. Effect of T cell cytokines on the physicochemical binding requirements for achieving cell cycle progression via the membrane IgM signaling pathway. J Immunol 155:3385–3400

    PubMed  CAS  Google Scholar 

  37. Mongini PKA, Inman JK (2001) Cytokine dependency of human B cell cycle progression elicited by ligands which coengage BCR and the CD21/CD19/CD81 costimulatory complex. Cell Immunol 207:127–140

    Article  PubMed  CAS  Google Scholar 

  38. Rudge EU, Cutler AJ, Pritchard NR, Smith KG (2002) Interleukin 4 reduces expression of inhibitory receptors on B cells and abolishes CD22 and Fc gamma RII-mediated B cell suppression. J Exp Med 195:1079–1085

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We sincerely thank Dr. T.M. Ross (University of Pittsburgh School of Medicine, USA) for kindly offering the plasmids TR421 and TR421-C3d3, and Prof. Q. Shen (Shanghai Institute of Planned Parenthood Research, China) for kindly providing the plasmid pSG5.C3d3.YL. We thank Dr. Steve Chu for proof reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Si Dong Xiong.

Additional information

Qing Dong Guan and Ying Wang have equally contributed to this work.

Grand support: The Programs of STCSM (04XD14003, 04DZ14902), Program for Outstanding Medical Academic Leader and The Major State Basic Research Development Program of People’s Republic of China (2001CB510005) to S. Xiong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, Q.D., Wang, Y., Chu, Y.W. et al. The distinct effects of three tandem repeats of C3d in the immune responses against tumor-associated antigen hCGβ by DNA immunization. Cancer Immunol Immunother 56, 875–884 (2007). https://doi.org/10.1007/s00262-006-0238-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0238-3

Keywords

Navigation