Skip to main content

Advertisement

Log in

Imatinib impairs CD8+ T lymphocytes specifically directed against the leukemia-associated antigen RHAMM/CD168 in vitro

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The Bcr-Abl tyrosine kinase inhibitor imatinib mesylate is highly effective in the front-line treatment of chronic myeloid leukemia (CML) and is increasingly used in patients with residual disease or relapse after allogeneic stem cell transplantation (allo-SCT). Since an impairment of anti-viral CD8+ T-lymphocyte function by imatinib has been described, we question whether imatinib also affects specific anti-leukemic CD8+ T lymphocytes generated from the peripheral blood of healthy donors, and of CML patients after allo-SCT. Here, we assessed CD8+ T-cell expansion and function from healthy donors and patients with CML. The release of IFN-γ and granzyme B by CD8+ T-lymphocytes specific for R3, a recently described T-cell epitope peptide derived from a leukemia-associated antigen designated RHAMM/CD168 (receptor for hyaluronic acid mediated motility), was inhibited by imatinib in a dose-dependent fashion (range: 1–25 μM). These T cells were able to lyse cognate peptide labeled T2 cells and CD34+ CML progenitor cells. This lysis was inhibited by imatinib. The inhibitory effect was not associated with an increased rate of apoptosis of T cells and reversible after removal of imatinib. In the light of these findings, clinical administration of imatinib might result in the reduction of efficacy of the graft-versus-leukemia effect or other T-cell-based immunotherapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Druker BJ, Talpaz M, Resta DJ, Peng B, Buchdunger E, Ford JM, Lydon NB, Kantarjian H, Capdeville R, Ohno-Jones S, Sawyers CL (2001) Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med 344:1031–1037

    Article  PubMed  CAS  Google Scholar 

  2. Savage DG, Antman KH (2002) Imatinib mesylate—a new oral targeted therapy. N Engl J Med 346:683–693

    Article  PubMed  CAS  Google Scholar 

  3. Magnusson MK, Meade KE, Nakamura R, Barrett J, Dunbar CE (2002) Activity of STI571 in chronic myelomonocytic leukemia with a platelet-derived growth factor beta receptor fusion oncogene. Blood 100:1088–1091

    Article  PubMed  CAS  Google Scholar 

  4. Millot F, Guilhot J, Nelken B, Leblanc T, De Bont ES, Bekassy AN, Gadner H, Sufliarska S, Stary J, Gschaidmeier H, Guilhot F, Suttorp M (2006) Imatinib mesylate is effective in children with chronic myelogenous leukemia in late chronic and advanced phase and in relapse after stem cell transplantation. Leukemia 20:187–192

    Article  PubMed  CAS  Google Scholar 

  5. Ramanarayanan J, Dunford LM, Baer MR, Sait SN, Lawrence W, McCarthy PL (2006) Chronic myeloid leukemia after treatment of lymphoid malignancies:Response to imatinib mesylate and favorable outcomes in three patients. Leuk Res 30:701–705

    Article  PubMed  CAS  Google Scholar 

  6. Bornhauser M, Kroger N, Schwerdtfeger R, Schafer-Eckart K, Sayer HG, Scheid C, Stelljes M, Kienast J, Mundhenk P, Fruehauf S, Kiehl MG, Wandt H, Theuser C, Ehninger G, Zander AR (2006) Allogeneic haematopoietic cell transplantation for chronic myelogenous leukemia in the era of imatinib: a retrospective multicentre study. Eur J Haematol 76:9–17

    Article  PubMed  Google Scholar 

  7. Auffermann-Gretzinger S, Lossos IS, Vayntrub TA, Leong W, Grumet FC, Blume KG, Stockerl-Goldstein KE, Levy R, Shizuru JA (2002) Rapid establishment of dendritic cell chimerism in allogeneic hematopoietic cell transplant recipients. Blood 99:1442–1448

    Article  PubMed  CAS  Google Scholar 

  8. Wassmann B, Pfeifer H, Scheuring U, Klein SA, Gokbuget N, Binckebanck A, Martin H, Gschaidmeier H, Hoelzer D, Ottmann OG (2002) Therapy with imatinib mesylate (Glivec) preceding allogeneic stem cell transplantation (SCT) in relapsed or refractory Philadelphia-positive acute lymphoblastic leukemia (Ph+ALL). Leukemia 16:2358–2365

    Article  PubMed  CAS  Google Scholar 

  9. Kantarjian HM, O’Brien S, Cortes JE, Giralt SA, Rios MB, Shan J, Giles FJ, Thomas DA, Faderl S, De Lima M, Garcia-Manero G, Champlin R, Arlinghaus R, Talpaz M (2002) Imatinib mesylate therapy for relapse after allogeneic stem cell transplantation for chronic myelogenous leukemia. Blood 100:1590–1595

    PubMed  CAS  Google Scholar 

  10. Olavarria E, Craddock C, Dazzi F, Marin D, Marktel S, Apperley JF, Goldman JM (2002) Imatinib mesylate (STI571) in the treatment of relapse of chronic myeloid leukemia after allogeneic stem cell transplantation. Blood 99:3861–3862

    Article  PubMed  CAS  Google Scholar 

  11. Wassmann B, Scheuring U, Thiede C, Pfeifer H, Bornhauser M, Griesinger F, Hochhaus A, Schleyer E, Gschaidmeier H, Hoelzer D, Ottmann OG (2003) Stable molecular remission induced by imatinib mesylate (STI571) in a patient with CML lymphoid blast crisis relapsing after allogeneic stem cell transplantation. Bone Marrow Transplant 31:611–614

    Article  PubMed  CAS  Google Scholar 

  12. Demetri GD, von Mehren M, Blanke CD, Van den Abbeele AD, Eisenberg B, Roberts PJ, Heinrich MC, Tuveson DA, Singer S, Janicek M, Fletcher JA, Silverman SG, Silberman SL, Capdeville R, Kiese B, Peng B, Dimitrijevic S, Druker BJ, Corless C, Fletcher CD, Joensuu H (2002) Efficacy and safety of imatinib mesylate in advanced gastrointestinal stromal tumors. N Engl J Med 347:472–480

    Article  PubMed  CAS  Google Scholar 

  13. Robert S Benjamin, Charles D Blanke, Jean-Yves Blay, Sylvie Bonvalot, Burton Eisenberg (2006) Management of Gastrointestinal Stromal Tumors in the Imatinib Era: Selected Case Studies. The Oncologist 11:9–20

    Article  PubMed  Google Scholar 

  14. Efron DT, Lillemoe KD (2005) The current management of gastrointestinal stromal tumors. Adv Surg 39:193–221

    Article  PubMed  Google Scholar 

  15. Cesare Guglielmi, William Arcese, Francesco Dazzi, Ronald Brand, Donald Bunjes, Leo F. Verdonck, Anton Schattenberg, Hans-Jochem Kolb, Per Ljungman, Agnes Devergie, Andrea Bacigalupo, Marta Gomez, Mauricette Michallet, Ahmet Elmaagacli, Alois Gratwohl, Jane Apperley, Dietger Niederwieser on behalf of the Chronic Leukemia Working Party of the European Group for Blood and Marrow Transplantation (2002) Donor lymphocyte infusion for relapsed chronic myelogenous leukemia: prognostic relevance of the initial cell dose. Blood 100:397–405

  16. DeAngelo DJ, Hochberg EP, Alyea EP, Longtine J, Lee S, Galinsky I, Parekkedon B, Ritz J, Antin JH, Stone RM, Soiffer RJ (2004) Extended follow-up of patients treated with imatinib mesylate (gleevec) for chronic myelogenous leukemia relapse after allogeneic transplantation: durable cytogenetic remission and conversion to complete donor chimerism without graft-versus-host disease. Clin Cancer Res 10:5065–5071

    Article  PubMed  CAS  Google Scholar 

  17. Peng B, Hayes M, Resta D, Racine-Poon A, Druker BJ, Talpaz M, Sawyers CL, Rosamilia M, Ford J, Lloyd P, Capdeville R (2004) Pharmacokinetics and pharmacodynamics of imatinib in a phase I trial with chronic myeloid leukemia patients. J Clin Oncol 22:935–942

    Article  PubMed  CAS  Google Scholar 

  18. Druker BJ, Lydon NB (2000) Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest 105:3–7

    Article  PubMed  CAS  Google Scholar 

  19. Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S, Zimmermann J, Lydon NB (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2:561–566

    Article  PubMed  CAS  Google Scholar 

  20. Deininger MW, Goldman JM, Lydon N, Melo JV (1997) The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood 90:3691–3698

    PubMed  CAS  Google Scholar 

  21. Gambacorti-Passerini C, le Coutre P, Mologni L, Fanelli M, Bertazzoli C, Marchesi E, Di Nicola M, Biondi A, Corneo GM, Belotti D, Pogliani E, Lydon NB (1997) Inhibition of the ABL kinase activity blocks the proliferation of BCR/ABL+ leukemic cells and induces apoptosis. Blood Cells Mol Dis 23:380–394

    Article  PubMed  CAS  Google Scholar 

  22. Buchdunger E, Cioffi CL, Law N, Stover D, Ohno-Jones S, Druker BJ, Lydon NB (2000) Abl protein-tyrosine kinase inhibitor STI571 inhibits in vitro signal transduction mediated by c-kit and platelet-derived growth factor receptors. J Pharmacol Exp Ther 295:139–145

    PubMed  CAS  Google Scholar 

  23. Heinrich MC, Griffith DJ, Druker BJ, Wait CL, Ott KA, Zigler AJ (2000) Inhibition of c-kit receptor tyrosine kinase activity by STI 571, a selective tyrosine kinase inhibitor. Blood 96:925–932

    PubMed  CAS  Google Scholar 

  24. Okuda K, Weisberg E, Gilliland DG, Griffin JD (2001) ARG tyrosine kinase activity is inhibited by STI571. Blood 97:2440–2448

    Article  PubMed  CAS  Google Scholar 

  25. Carroll M, Ohno-Jones S, Tamura S, Buchdunger E, Zimmermann J, Lydon NB, Gilliland DG, Druker BJ (1997) CGP 57148, a tyrosine kinase inhibitor, inhibits the growth of cells expressing BCR-ABL, TEL-ABL, and TEL-PDGFR fusion proteins. Blood 90:4947–4952

    PubMed  CAS  Google Scholar 

  26. Seggewiss R, Lore K, Greiner E, Magnusson MK, Price DA, Douek DC, Dunbar CE, Wiestner A (2005) Imatinib inhibits T-cell receptor-mediated T-cell proliferation and activation in a dose-dependent manner. Blood 105:2473–2479

    Article  PubMed  CAS  Google Scholar 

  27. Appel S, Balabanov S, Brummendorf TH, Brossart P (2005) Effects of imatinib on normal hematopoiesis and immune activation. Stem Cells 23:1082–1088

    Article  PubMed  CAS  Google Scholar 

  28. Dietz A, Souan L, Knutson G, Bulur P, Litzow M, Vuk-Pavlovic S (2004) Imatinib mesylate inhibits T-cell proliferation in vitro and delayed-type hypersensitivity in vivo. Blood 104:1094–1099

    Article  PubMed  CAS  Google Scholar 

  29. Gao H, Lee BN, Talpaz M, Donato NJ, Cortes JE, Kantarjian HM, Reuben JM (2005) Imatinib mesylate suppresses cytokine synthesis by activated CD4 T cells of patients with chronic myelogenous leukemia. Leukemia 19:1905–1911

    Article  PubMed  CAS  Google Scholar 

  30. Appel S, Rupf A, Weck MM, Schoor O, Brummendorf TH, Weinschenk T, Grunebach F, Brossart P (2005) Effects of imatinib on monocyte-derived dendritic cells are mediated by inhibition of nuclear factor-kappaB and Akt signaling pathways. Clin Cancer Res11:1928–1940

    Article  Google Scholar 

  31. Wang H, Cheng F, Cuenca A, Horna P, Zheng Z, Bhalla K, Sotomayor EM (2004) Imatinib mesylate (STI-571) enhances antigen-presenting cell function and overcomes tumor-induced CD4+ T-cell tolerance. Blood 105:1135–1143

    Article  PubMed  CAS  Google Scholar 

  32. Savani BN, Montero A, Kurlander R, Childs R, Hensel N, Barrett AJ (2005) Imatinib synergizes with donor lymphocyte infusions to achieve rapid molecular remission of CML relapsing after allogeneic stem cell transplantation. Bone Marrow Transplant 36:1009–1015

    Article  PubMed  CAS  Google Scholar 

  33. Chunduri S, Dobogai LC, Bruno A, Kadkol S, Rondelli D (2005) Does post-transplant treatment with imatinib mesylate inhibit graft-versus-leukemia? Leukemia 9:456–457

    Article  CAS  Google Scholar 

  34. Weisser M, Tischer J, Schnittger S, Schoch C, Ledderose G, Kolb HJ (2006) A comparison of donor lymphocyte infusions or imatinib mesylate for patients with chronic myelogenous leukemia who have relapsed after allogeneic stem cell transplantation. Haematologica 9:663–666

    Google Scholar 

  35. Greiner J, Li L, Ringhoffer M, Barth T, Giannopoulos K, Guillaume P, Ritter G, Wiesneth M, Dohner H, Schmitt M (2005) Identification and characterization of epitopes of the receptor for hyaluronic acid-mediated motility (RHAMM/CD168) recognizied by CD8+ T cells of HLA-A2-positive patients with acute myeloid leukemia. Blood 106:938–945

    Article  PubMed  CAS  Google Scholar 

  36. Li L, Reinhardt P, Schmitt A, Barth TF, Greiner J, Ringhoffer M, Dohner H, Wiesneth M, Schmitt M (2005) Dendritic cells generated from acute myeloid leukemia (AML) maintain the expression of immunogenic leukemia associated antigens. Cancer Immunol Immunother 54:685–693

    Article  PubMed  CAS  Google Scholar 

  37. Schmitt M, Schmitt A, Reinhardt P, Thess B, Manfras B, Lindhofer H, Riechelmann H, Wiesneth M, Gronau S (2004) Opsonization with a trifunctional bispecific (alphaCD3 x alphaEpCAM) antibody results in efficient lysis in vitro and in vivo of EpCAM positive tumor cells by cytotoxic T lymphocytes. Int J Oncol 25:841–848

    PubMed  CAS  Google Scholar 

  38. Molldrem J, Lee PP, Wang C, Champlin RE, Davis MM (1999) A PR1-human leukocyte antigen-A2 tetramer can be used to isolate low-frequency cytotoxic T lymphocytes from healthy donors that selectively lyse chronic myeloid leukemia. Cancer Res 59:2675–2681

    PubMed  CAS  Google Scholar 

  39. Greiner J, Ringhoffer M, Taniguchi M, Schmitt A, Kirchner D, Krachn G, Heilmann V, Gschwend J, Bergmann L, Dohner H, Schmitt M (2002) Receptor for hyaluronan acid-mediated motility (RHAMM) is a new immunogenic leukemia-associated antigen in acute and chronic myeloid leukemia. Exp Hematol 30:1029–1035

    Article  PubMed  CAS  Google Scholar 

  40. Greiner J, Ringhoffer M, Taniguchi M, Hauser T, Schmitt A, Dohner H, Schmitt M (2003) Characterization of several leukemia-associated antigens inducing humoral immune responses in acute and chronic myeloid leukemia. Int J Cancer 106:224–231

    Article  PubMed  CAS  Google Scholar 

  41. Mailander M, Scheibenbogen C, Thiel E, Letsch A, Blau IW, Keilholz U (2004) Complete remission in a patient with recurrent acute myeloid leukemia induced by vaccination with WT1 peptide in the absence of hematological or renal toxicity. Leukemia 18:165–166

    Article  PubMed  CAS  Google Scholar 

  42. Molldrem J, Kant S, Lu S (2002) peptide vaccination with PR1 elicits active T cell immunity that induces cytogenetic remission in acute myelogenous leukemia. Blood 98 abstract 8:92

    Google Scholar 

  43. Oka Y, Udaka k, Tsuboi A, Elisseeva OA, Ogawa H, Aozasa K, Kishhimoto T, Sugiyama H (2000) Cancer immunotherapy targeting Wilms’tumor gene WT1 product. J Immunol 164:1873–1880

    PubMed  CAS  Google Scholar 

  44. Ohminami H, Yasukawa M, Fujita S (2000) HLA class I-restricted lysis of leukemia cells by a CD8+ cytotoxic T-lymphocyte clone specific fir WT1 peptide. Blood 95:286–293

    PubMed  CAS  Google Scholar 

  45. Maziarz RT (2004) Imatinib mesylate: a novel immune suppressive agent? Blood 104:914–915

    Article  CAS  Google Scholar 

  46. Perez-Abad M, Perez-Oteyza J, Arranz Pena MI, Lopez Jimenez J, Larana JG, Sevillano RP (2006) Monitoring serum levels of imatinib and hematological toxicity in CML patients. Haematologica 91(s1):60

    Google Scholar 

  47. Piazza RG, Magistroni V, Andreoni F, Franceschino A, Tornaghi L, Varella-Garcia M, Bungaro S, Colnaghi F, Corneo G, Pogliani EM, Gambacorti-Passerini C (2005) Imatinib dose increase up to 1200 mg daily can induce new durable complete cytogenetic remissions in relapsed Ph+ chronic myeloid leukemia patients. Leukemia 19:1985–1987

    Article  PubMed  CAS  Google Scholar 

  48. Peng B, Lloyd P, Schran H (2005) Clinical pharmacokinetics of imatinib. Clin Pharmacokinet 44:879–894

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We thank Ms Goetz for her excellent technical support in this project. This research was kindly supported by Novartis, Nuremberg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Schmitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Schmitt, A., Chen, B. et al. Imatinib impairs CD8+ T lymphocytes specifically directed against the leukemia-associated antigen RHAMM/CD168 in vitro. Cancer Immunol Immunother 56, 849–861 (2007). https://doi.org/10.1007/s00262-006-0232-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0232-9

Keywords

Navigation