Skip to main content

Advertisement

Log in

The cytotoxic T cell response to peptide analogs of the HLA-A*0201-restricted MUC1 signal sequence epitope, M1.2

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

The mucin MUC1 molecule is overexpressed on a variety of adenocarcinomas and is thus, a potential target for immunotherapy. Of the MUC1 peptides that bind to HLA-A*0201(A2), M1.2 (LLLLTVLTV) from the signal sequence appears to be the most immunogenic in humans. Here we have shown that large numbers (109) of tetramer-binding M1.2-specific cytotoxic T lymphocytes (CTL) can be generated ex vivo from circulating precursors, derived from healthy adults. However, there was significant interpersonal variation in the level of co-stimulatory signal required. Tetramer-binding cells also required maturation in culture to become proficient killers of the HLA-A2+ MUC1+ MCF7 cell line, known to express a low number of endogenously processed M1.2. The functional avidity of M1.2-specific CTL, however, was low as compared to CTL specific for an HIV-1 epitope. Despite the low avidity, M1.2-specific CTL were polyfunctional, secreting multiple cytokines upon degranulation with antigen recognition. To identify potential agonist peptides that may be superior immunogens, an M1.2-specific CTL culture was used to scan a large nonameric combinatorial peptide library. Of 54 predicted peptides, 4 were “consensus” agonists because they were recognized by CTL from two other donors. Two agonists, p29 (LLPWTVLTV) and p15 (VLLWTVLTV), were equally stimulatory when loaded onto C1R target cells transfected with wild-type HLA-A2. Both agonists induced IL-2, TNF-α, IFN-γ, and degranulation with M1.2-specific CTL. In contrast, production of these cytokines, which are tightly regulated by specific activation through the T cell receptor, was restricted when the CTL were stimulated with peptides loaded onto C1R cells that were transfected with an HLA-A2 molecule bearing a mutation that abrogates binding to the CD8 co-receptor. Thus, activation by both M1.2 and its agonists was dependent upon CD8, showing that compensation by the co-receptor was necessary for the human T cell response to M1.2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

M1.2:

MUC1 epitope LLLLTVLTV

References

  1. Taylor-Papadimitriou J, Burchell JM, Plunkett T, Graham R, Correa I, Miles D, Smith M (2002) MUC1 and the immunobiology of cancer. J Mammary Gland Biol Neoplasia 7:209–221

    Article  PubMed  Google Scholar 

  2. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A et al (1989) Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science 244:707–712

    Article  PubMed  CAS  Google Scholar 

  3. Gendler S, Taylor-Papadimitriou J, Duhig T, Rothbard J, Burchell J (1988) A highly immunogenic region of a human polymorphic epithelial mucin expressed by carcinomas is made up of tandem repeats. J Biol Chem 263:12820–12823

    PubMed  CAS  Google Scholar 

  4. Brossart P, Schneider A, Dill P, Schammann T, Grunebach F, Wirths S, Kanz L, Buhring HJ, Brugger W (2001) The epithelial tumor antigen MUC1 is expressed in hematological malignancies and is recognized by MUC1-specific cytotoxic T-lymphocytes. Cancer Res 61:6846–6850

    PubMed  CAS  Google Scholar 

  5. Gendler SJ, Lancaster CA, Taylor-Papadimitriou J, Duhig T, Peat N, Burchell J, Pemberton L, Lalani EN, Wilson D (1990) Molecular cloning and expression of human tumor-associated polymorphic epithelial mucin. J Biol Chem 265:15286–15293

    PubMed  CAS  Google Scholar 

  6. Ligtenberg MJ, Vos HL, Gennissen AM, Hilkens J (1990) Episialin, a carcinoma-associated mucin, is generated by a polymorphic gene encoding splice variants with alternative amino termini. J Biol Chem 265:5573–5578

    PubMed  CAS  Google Scholar 

  7. Karanikas V, Hwang LA, Pearson J, Ong CS, Apostolopoulos V, Vaughan H, Xing PX, Jamieson G, Pietersz G, Tait B, Broadbent R, Thynne G, McKenzie IF (1997) Antibody and T cell responses of patients with adenocarcinoma immunized with mannan-MUC1 fusion protein. J Clin Invest 100:2783–2792

    Article  PubMed  CAS  Google Scholar 

  8. Musselli C, Ragupathi G, Gilewski T, Panageas KS, Spinat Y, Livingston PO (2002) Reevaluation of the cellular immune response in breast cancer patients vaccinated with MUC1. Int J Cancer 97:660–667

    Article  PubMed  CAS  Google Scholar 

  9. Schmielau J, Nalesnik MA, Finn OJ (2001) Suppressed T-cell receptor zeta chain expression and cytokine production in pancreatic cancer patients. Clin Cancer Res 7:933s–939s

    PubMed  CAS  Google Scholar 

  10. Musselli C, Livingston PO, Ragupathi G (2001) Keyhole limpet hemocyanin conjugate vaccines against cancer: the memorial sloan kettering experience. J Cancer Res Clin Oncol 127(Suppl 2):R20–R26

    Article  PubMed  CAS  Google Scholar 

  11. Apostolopoulos V, Karanikas V, Haurum JS, McKenzie IF (1997) Induction of HLA-A2-restricted CTLs to the mucin 1 human breast cancer antigen. J Immunol 159:5211–5218

    PubMed  CAS  Google Scholar 

  12. Brossart P, Heinrich KS, Stuhler G, Behnke L, Reichardt VL, Stevanovic S, Muhm A, Rammensee HG, Kanz L, Brugger W (1999) Identification of HLA-A2-restricted T-cell epitopes derived from the MUC1 tumor antigen for broadly applicable vaccine therapies. Blood 93:4309–4317

    PubMed  CAS  Google Scholar 

  13. Brossart P, Wirths S, Stuhler G, Reichardt VL, Kanz L, Brugger W (2000) Induction of cytotoxic T-lymphocyte responses in vivo after vaccinations with peptide-pulsed dendritic cells. Blood 96:3102–3108

    PubMed  CAS  Google Scholar 

  14. Henderson RA, Michel H, Sakaguchi K, Shabanowitz J, Appella E, Hunt DF, Engelhard VH (1992) HLA-A2.1-associated peptides from a mutant cell line: a second pathway of antigen presentation. Science 255:1264–1266

    Article  PubMed  CAS  Google Scholar 

  15. Feuerer M, Beckhove P, Bai L, Solomayer EF, Bastert G, Diel IJ, Pedain C, Oberniedermayr M, Schirrmacher V, Umansky V (2001) Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat Med 7:452–458

    Article  PubMed  CAS  Google Scholar 

  16. Correa I, Plunkett T, Coleman J, Galani E, Windmill E, Burchell JM, Taylor-Papdimitriou J (2005) Responses of human T cells to peptides flanking the tandem repeat and overlapping the signal sequence of MUC1. Int J Cancer 115:760–768

    Article  PubMed  CAS  Google Scholar 

  17. Riddell SR (2004) Finding a place for tumor-specific T cells in targeted cancer therapy. J Exp Med 200:1533–1537

    Article  PubMed  CAS  Google Scholar 

  18. Kan-Mitchell J, Bisikirska B, Wong-Staal F, Schaubert KL, Bajcz M, Bereta M (2004) The HIV-1 HLA-A2-SLYNTVATL is a help-independent CTL epitope. J Immunol 172:5249–5261

    PubMed  CAS  Google Scholar 

  19. Kan-Mitchell J, Bajcz M, Schaubert KL, Price DA, Brenchley JM, Asher TE, Douek DC, Ng HL, Yang OO, Rinaldo CR, Benito JM, Bisikirska B, Hegde R, Marincola FM, Boggiano C, Wilson D, Abrams J, Blondelle SE, Wilson DB (2006) Degeneracy and repertoire of the human HIV-1 Gag p17(77−85) CTL response. J Immunol 176:6690–6701

    PubMed  CAS  Google Scholar 

  20. Dudley ME, Rosenberg SA (2003) Adoptive-cell-transfer therapy for the treatment of patients with cancer. Nat Rev Cancer 3:666–675

    Article  PubMed  CAS  Google Scholar 

  21. Pittet MJ, Zippelius A, Valmori D, Speiser DE, Cerottini JC, Romero P (2002) Melan-A/MART-1-specific CD8 T cells: from thymus to tumor. Trends Immunol 23:325–328

    Article  PubMed  CAS  Google Scholar 

  22. Bohnenkamp HR, Coleman J, Burchell JM, Taylor-Papadimitriou J, Noll T (2004) Breast carcinoma cell lysate-pulsed dendritic cells cross-prime MUC1-specific CD8+ T cells identified by peptide-MHC-class-I tetramers. Cell Immunol 231:112–125

    Article  PubMed  CAS  Google Scholar 

  23. Pinilla C, Rubio-Godoy V, Dutoit V, Guillaume P, Simon R, Zhao Y, Houghten RA, Cerottini JC, Romero P, Valmori D (2001) Combinatorial peptide libraries as an alternative approach to the identification of ligands for tumor-reactive cytolytic T lymphocytes. Cancer Res 61:5153–5160

    PubMed  CAS  Google Scholar 

  24. Parham P, Brodsky FM (1981) Partial purification and some properties of BB7.2. A cytotoxic monoclonal antibody with specificity for HLA-A2 and a variant of HLA-A28. Hum Immunol 3:277–299

    Article  PubMed  CAS  Google Scholar 

  25. Jonuleit H, Kuhn U, Muller G, Steinbrink K, Paragnik L, Schmitt E, Knop J, Enk AH (1997) Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol 27:3135–3142

    PubMed  CAS  Google Scholar 

  26. Houghten RA (1985) General method for the rapid solid-phase synthesis of large numbers of peptides: specificity of antigen–antibody interaction at the level of individual amino acids. Proc Natl Acad Sci USA 82:5131–5135

    Article  PubMed  CAS  Google Scholar 

  27. Purbhoo MA, Boulter JM, Price DA, Vuidepot AL, Hourigan CS, Dunbar PR, Olson K, Dawson SJ, Phillips RE, Jakobsen BK, Bell JI, Sewell AK (2001) The human CD8 coreceptor effects cytotoxic T cell activation and antigen sensitivity primarily by mediating complete phosphorylation of the T cell receptor zeta chain. J Biol Chem 276:32786–32792

    Article  PubMed  CAS  Google Scholar 

  28. Kersh EN, Kaech SM, Onami TM, Moran M, Wherry EJ, Miceli MC, Ahmed R (2003) TCR signal transduction in antigen-specific memory CD8 T cells. J Immunol 170:5455–5463

    PubMed  CAS  Google Scholar 

  29. Krishnan S, Farber DL, Tsokos GC (2003) T cell rewiring in differentiation and disease. J Immunol 171:3325–3331

    PubMed  CAS  Google Scholar 

  30. Rubio V, Stuge TB, Singh N, Betts MR, Weber JS, Roederer M, Lee PP (2003) Ex vivo identification, isolation and analysis of tumor-cytolytic T cells. Nat Med 9:1377–1382

    Article  PubMed  CAS  Google Scholar 

  31. Snyder JT, Alexander-Miller MA, Berzofskyl JA, Belyakov IM (2003) Molecular mechanisms and biological significance of CTL avidity. Curr HIV Res 1:287–294

    Article  PubMed  CAS  Google Scholar 

  32. Price DA, Brenchley JM, Ruff LE, Betts MR, Hill BJ, Roederer M, Koup RA, Migueles SA, Gostick E, Wooldridge L, Sewell AK, Connors M, Douek DC (2005) Avidity for antigen shapes clonal dominance in CD8+ T cell populations specific for persistent DNA viruses. J Exp Med 202:1349–1361

    Article  PubMed  CAS  Google Scholar 

  33. Maile R, Siler CA, Kerry SE, Midkiff KE, Collins EJ, Frelinger JA (2005) Peripheral “CD8 tuning” dynamically modulates the size and responsiveness of an antigen-specific T cell pool in vivo. J Immunol 174:619–627

    PubMed  CAS  Google Scholar 

  34. Hutchinson SL, Wooldridge L, Tafuro S, Laugel B, Glick M, Boulter JM, Jakobsen BK, Price DA, Sewell AK (2003) The CD8 T cell coreceptor exhibits disproportionate biological activity at extremely low binding affinities. J Biol Chem 278:24285–24293

    Article  PubMed  CAS  Google Scholar 

  35. Slifka MK, Whitton JL (2000) Antigen-specific regulation of T cell-mediated cytokine production. Immunity 12:451–457

    Article  PubMed  CAS  Google Scholar 

  36. Betts MR, Nason MC, West SM, De Rosa SC, Migueles SA, Abraham J, Lederman MM, Benito JM, Goepfert PA, Connors M, Roederer M, Koup RA (2006) HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T-cells. Blood 107:4781–4789

    Article  PubMed  CAS  Google Scholar 

  37. van Stipdonk MJ, Lemmens EE, Schoenberger SP (2001) Naive CTLs require a single brief period of antigenic stimulation for clonal expansion and differentiation. Nat Immunol 2:423–429

    PubMed  Google Scholar 

  38. Kaech SM, Ahmed R (2001) Memory CD8+ T cell differentiation: initial antigen encounter triggers a developmental program in naive cells. Nat Immunol 2:415–422

    PubMed  CAS  Google Scholar 

  39. Lanzavecchia A, Sallusto F (2002) Progressive differentiation and selection of the fittest in the immune response. Nat Rev Immunol 2:982–987

    Article  PubMed  CAS  Google Scholar 

  40. Langenkamp A, Casorati G, Garavaglia C, Dellabona P, Lanzavecchia A, Sallusto F (2002) T cell priming by dendritic cells: thresholds for proliferation, differentiation and death and intraclonal functional diversification. Eur J Immunol 32:2046–2054

    Article  PubMed  CAS  Google Scholar 

  41. Ho WY, Nguyen HN, Wolfl M, Kuball J, Greenberg PD (2006) In vitro methods for generating CD8+ T-cell clones for immunotherapy from the naive repertoire. J Immunol Methods 310:40–52

    Article  PubMed  CAS  Google Scholar 

  42. Gett AV, Sallusto F, Lanzavecchia A, Geginat J (2003) T cell fitness determined by signal strength. Nat Immunol 4:355–360

    Article  PubMed  CAS  Google Scholar 

  43. Whiteside TL, Zhao Y, Tsukishiro T, Elder EM, Gooding W, Baar J (2003) Enzyme-linked immunospot, cytokine flow cytometry, and tetramers in the detection of T-cell responses to a dendritic cell-based multipeptide vaccine in patients with melanoma. Clin Cancer Res 9:641–649

    PubMed  CAS  Google Scholar 

  44. Comin-Anduix B, Gualberto A, Glaspy JA, Seja E, Ontiveros M, Reardon DL, Renteria R, Englahner B, Economou JS, Gomez-Navarro J, Ribas A (2006) Definition of an immunologic response using the major histocompatibility complex tetramer and enzyme-linked immunospot assays. Clin Cancer Res 12:107–116

    Article  PubMed  CAS  Google Scholar 

  45. Wilson DB, Pinilla C, Wilson DH, Schroder K, Boggiano C, Judkowski V, Kaye J, Hemmer B, Martin R, Houghten RA (1999) Immunogenicity. I. Use of peptide libraries to identify epitopes that activate clonotypic CD4+ T cells and induce T cell responses to native peptide ligands. J Immunol 163:6424–6434

    PubMed  CAS  Google Scholar 

  46. Hemmer B, Vergelli M, Gran B, Ling N, Conlon P, Pinilla C, Houghten R, McFarland HF, Martin R (1998) Predictable TCR antigen recognition based on peptide scans leads to the identification of agonist ligands with no sequence homology. J Immunol 160:3631–3636

    PubMed  CAS  Google Scholar 

  47. Nino-Vasquez JJ, Allicotti G, Borras E, Wilson DB, Valmori D, Simon R, Martin R, Pinilla C (2004) A powerful combination: the use of positional scanning libraries and biometrical analysis to identify cross-reactive T cell epitopes. Mol Immunol 40:1063–1074

    Article  PubMed  CAS  Google Scholar 

  48. Hernandez J, Schoeder K, Blondelle SE, Pons FG, Lone YC, Simora A, Langlade-Demoyen P, Wilson DB, Zanetti M (2004) Antigenicity and immunogenicity of peptide analogues of a low affinity peptide of the human telomerase reverse transcriptase tumor antigen. Eur J Immunol 34:2331–2341

    Article  PubMed  CAS  Google Scholar 

  49. Jones EY (2005) Favorite flavors of surfaces. Nat Immunol 6:365–366

    Article  PubMed  CAS  Google Scholar 

  50. Alam SM, Travers PJ, Wung JL, Nasholds W, Redpath S, Jameson SC, Gascoigne NR (1996) T-cell-receptor affinity and thymocyte positive selection. Nature 381:616–620

    Article  PubMed  CAS  Google Scholar 

  51. Tanabe M, Karaki S, Takiguchi M, Nakauchi H (1992) Antigen recognition by the T cell receptor is enhanced by CD8 alpha-chain binding to the alpha 3 domain of MHC class I molecules, not by signaling via the cytoplasmic domain of CD8 alpha. Int Immunol 4:147–152

    PubMed  CAS  Google Scholar 

  52. Couedel C, Bodinier M, Peyrat MA, Bonneville M, Davodeau F, Lang F (1999) Selection and long-term persistence of reactive CTL clones during an EBV chronic response are determined by avidity, CD8 variable contribution compensating for differences in TCR affinities. J Immunol 162:6351–6358

    PubMed  CAS  Google Scholar 

  53. Levitsky V, de Campos-Lima PO, Frisan T, Masucci MG (1998) The clonal composition of a peptide-specific oligoclonal CTL repertoire selected in response to persistent EBV infection is stable over time. J Immunol 161:594–601

    PubMed  CAS  Google Scholar 

  54. Wooldridge L, Hutchinson SL, Choi EM, Lissina A, Jones E, Mirza F, Dunbar PR, Price DA, Cerundolo V, Sewell AK (2003) Anti-CD8 antibodies can inhibit or enhance peptide-MHC class I (pMHCI) multimer binding: this is paralleled by their effects on CTL activation and occurs in the absence of an interaction between pMHCI and CD8 on the cell surface. J Immunol 171:6650–6660

    PubMed  CAS  Google Scholar 

  55. Wooldridge L, van den Berg HA, Glick M, Gostick E, Laugel B, Hutchinson SL, Milicic A, Brenchley JM, Douek DC, Price DA, Sewell AK (2005) Interaction between the CD8 coreceptor and major histocompatibility complex class I stabilizes T cell receptor–antigen complexes at the cell surface. J Biol Chem 280:27491–27501

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Supported by grants to M.S.M. from the Susan G. Komen Breast Cancer Foundation, Expedition Inspiration, and the Department of Defense; to D.B.W. from the Alzheimer’s and Aging Research Center, the Osteoporosis and Breast Cancer Research Center, Mixture Sciences Inc., and the National Institutes of Health (CA78040); and to J.K.M. from the Michigan Life Sciences Corridor Program 1659 and National Institutes of Health (R21-AI44372, R01-AI064069).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm S. Mitchell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mitchell, M.S., Lund, T.A., Sewell, A.K. et al. The cytotoxic T cell response to peptide analogs of the HLA-A*0201-restricted MUC1 signal sequence epitope, M1.2. Cancer Immunol Immunother 56, 287–301 (2007). https://doi.org/10.1007/s00262-006-0191-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-006-0191-1

Keywords

Navigation