Skip to main content
Log in

Combination therapy using the cyclooxygenase-2 inhibitor Parecoxib and radioimmunotherapy in nude mice with small peritoneal metastases of colonic origin

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Background: Inhibition of the COX-2 enzyme has been shown to have a radiosensitizing effect in epithelial cancers. The aim of this study was to investigate whether the efficacy of radioimmunotherapy (RIT) using 131I-labeled anti-CEA monoclonal antibody MN-14 could be enhanced by co-administration of the selective COX-2 inhibitor Parecoxib in mice with small volume (1–3 mm) peritoneal carcinomatosis of colonic origin. Methods: First, the efficacy of 14 daily injections of Parecoxib monotherapy (0 – 0.2 – 1.0 – 5.0 – 25.0 mg/kg) was determined in mice with intraperitoneal LS174T xenografts. Second, the influence of Parecoxib (1.0 or 5.0 mg/kg) on the biodistribution of 125I-MN-14 was assessed. Finally, the efficacy of RIT alone [125 μCi 131I-MN-14/mouse ≈ 1/4 of the maximal tolerated dose (MTD)] was compared with that of Parecoxib monotherapy and RIT combined with daily injections of Parecoxib (1.0 or 5.0 mg/kg). Results: Parecoxib had no measurable antitumor effect up to the highest dose level (25 mg/kg). Parecoxib had no effect on the uptake of 125I-MN-14 in the intraperitoneal tumor xenografts or on normal tissue distribution. Median survival of the control mice and the mice treated with Parecoxib monotherapy (1.0 or 5.0 mg/kg) was 48.5 days, 52 days and 52 days (P=0.47). RIT alone significantly delayed the growth of the intraperitoneal xenografts resulting in a median survival of 87 days (P<0.0001). Mice treated with RIT + Parecoxib at 1.0 or 5.0 mg/kg had a median survival of 73.5 days and 76 days, respectively, which was not statistically different from survival after RIT alone (P=0.15). Conclusion: The COX-2 inhibitor Parecoxib does not enhance the therapeutic efficacy of RIT of experimental small volume peritoneal carcinomatosis of colonic origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Koppe MJ, Bleichrodt RP, Oyen WJG, Boerman OC (2005) Radioimmunotherapy of colorectal cancer. Br J Surg (in press)

  2. Jain RK (1990) Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 50:814s–819s

    PubMed  CAS  Google Scholar 

  3. Juweid M, Sharkey RM, Behr T, Swayne LC, Herskovic T, Pereira M, Rubin AD, Hanley D, Dunn R, Siegel J, Goldenberg DM (1996) Radioimmunotherapy of medullary thyroid cancer with iodine-131-labeled anti-CEA antibodies. J Nucl Med 37:905–911

    PubMed  CAS  Google Scholar 

  4. Schlom J, Eggensperger D, Colcher D, Molinolo A, Houchens D, Miller LS, Hinkle G, Siler K (1992) Therapeutic advantage of high-affinity anticarcinoma radioimmunoconjugates. Cancer Res 52:1067–1072

    PubMed  CAS  Google Scholar 

  5. Behr TM, Blumenthal RD, Memtsoudis S, Sharkey RM, Gratz S, Becker W, Goldenberg DM (2000) Cure of metastatic human colonic cancer in mice with radiolabeled monoclonal antibody fragments. Clin Cancer Res 6:4900–4907

    PubMed  CAS  Google Scholar 

  6. Buchegger F, Mach J-P, Folli S, Delaloye B, Bischof-Delaloye A, Pelegrin A (1996) Higher efficacy of 131I-labeled anti-carcinoembryonic antigen-monoclonal antibody F(ab’)2 as compared to intact antibodies in radioimmunotherapy of established human colon carcinoma grafted in nuce mice. In: Sauter-Bihl M, Bihl H, Wannenmacher W (eds) Systemic radiotherapy with monoclonal antibodies—recent results in cancer research. Springer, Berlin, Heidelberg New york, pp 19–35

    Google Scholar 

  7. Boerman OC, van Schaijk FG, Oyen WJ, Corstens FH (2003) Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med 44:400–411

    PubMed  Google Scholar 

  8. Cardillo TM, Blumenthal R, Ying Z, Gold DV (2002) Combined gemcitabine and radioimmunotherapy for the treatment of pancreatic cancer. Int J Cancer 97:386–392

    Article  PubMed  CAS  Google Scholar 

  9. Gold DV, Schutsky K, Modrak D, Cardillo TM (2003) Low-dose radioimmunotherapy ((90)Y-PAM4) combined with gemcitabine for the treatment of experimental pancreatic cancer. Clin Cancer Res 9:3929S–3937S

    PubMed  CAS  Google Scholar 

  10. Gold DV, Modrak DE, Schutsky K, Cardillo TM (2004) Combined 90Yttrium-DOTA-labeled PAM4 antibody radioimmunotherapy and gemcitabine radiosensitization for the treatment of a human pancreatic cancer xenograft. Int J Cancer 109:618–626

    Article  PubMed  CAS  Google Scholar 

  11. Paganini-Hill A (1994) Aspirin and the prevention of colorectal cancer: a review of the evidence. Semin Surg Oncol 10:158–164

    Article  PubMed  CAS  Google Scholar 

  12. Gilroy DW, Colville-Nash PR, Willis D, Chivers J, Paul-Clark MJ, Willoughby DA (1999) Inducible cyclooxygenase may have anti-inflammatory properties. Nat Med 5:698–701

    Article  PubMed  CAS  Google Scholar 

  13. Eberhart CE, Coffey RJ, Radhika A, Giardiello FM, Ferrenbach S, DuBois RN (1994) Up-regulation of cyclooxygenase 2 gene expression in human colorectal adenomas and adenocarcinomas. Gastroenterology 107:1183–1188

    PubMed  CAS  Google Scholar 

  14. Watson AJ (1998) Chemopreventive effects of NSAIDs against colorectal cancer: regulation of apoptosis and mitosis by COX-1 and COX-2. Histol Histopathol 13:591–597

    PubMed  CAS  Google Scholar 

  15. Li M, Wu X, Xu XC (2001) Induction of apoptosis in colon cancer cells by cyclooxygenase-2 inhibitor NS398 through a cytochrome c-dependent pathway. Clin Cancer Res 7:1010–1016

    PubMed  CAS  Google Scholar 

  16. Tsujii M, Kawano S, DuBois RN (1997) Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proc Natl Acad Sci USA 94:3336–3340

    Article  PubMed  CAS  Google Scholar 

  17. Gately S, Li WW (2004) Multiple roles of COX-2 in tumor angiogenesis: a target for antiangiogenic therapy. Semin Oncol 31:2–11

    Article  PubMed  CAS  Google Scholar 

  18. Choy H, Milas L (2003) Enhancing radiotherapy with cyclooxygenase-2 enzyme inhibitors: a rational advance? J Natl Cancer Inst 95:1440–1452

    PubMed  CAS  Google Scholar 

  19. Rostom A, Wells G, Tugwell P, Welch V, Dube C, McGowan J (2000) Prevention of chronic NSAID induced upper gastrointestinal toxicity. Cochrane Database Syst Rev CD002296

  20. Davis TW, O’Neal JM, Pagel MD, Zweifel BS, Mehta PP, Heuvelman DM, Masferrer JL (2004) Synergy between celecoxib and radiotherapy results from inhibition of cyclooxygenase-2-derived prostaglandin E2, a survival factor for tumor and associated vasculature. Cancer Res 64:279–285

    Article  PubMed  CAS  Google Scholar 

  21. Liu W, Chen Y, Wang W, Keng P, Finkelstein J, Hu D, Liang L, Guo M, Fenton B, Okunieff P, Ding I (2003) Combination of radiation and celebrex (celecoxib) reduce mammary and lung tumor growth. Am J Clin Oncol 26:S103–S109

    Article  PubMed  Google Scholar 

  22. Amirghahari N, Harrison L, Smith M, Rong X, Naumann I, Ampil F, Shi R, Glass J, Nathan CA (2003) NS 398 radiosensitizes an HNSCC cell line by possibly inhibiting radiation-induced expression of COX-2. Int J Radiat Oncol Biol Phys 57:1405–1412

    Article  PubMed  CAS  Google Scholar 

  23. Pyo H, Choy H, Amorino GP, Kim JS, Cao Q, Hercules SK, DuBois RN (2001) A selective cyclooxygenase-2 inhibitor, NS-398, enhances the effect of radiation in vitro and in vivo preferentially on the cells that express cyclooxygenase-2. Clin Cancer Res 7:2998–3005

    PubMed  CAS  Google Scholar 

  24. Kishi K, Petersen S, Petersen C, Hunter N, Mason K, Masferrer JL, Tofilon PJ, Milas L (2000) Preferential enhancement of tumor radioresponse by a cyclooxygenase-2 inhibitor. Cancer Res 60:1326–1331

    PubMed  CAS  Google Scholar 

  25. Milas L, Kishi K, Hunter N, Mason K, Masferrer JL, Tofilon PJ (1999) Enhancement of tumor response to gamma-radiation by an inhibitor of cyclooxygenase-2 enzyme. J Natl Cancer Inst 91:1501–1504

    Article  PubMed  CAS  Google Scholar 

  26. Petersen C, Petersen S, Milas L, Lang FF, Tofilon PJ (2000) Enhancement of intrinsic tumor cell radiosensitivity induced by a selective cyclooxygenase-2 inhibitor. Clin Cancer Res 6:2513–2520

    PubMed  CAS  Google Scholar 

  27. Koppe MJ, Soede AC, Pels W, Oyen WJ, Goldenberg DM, Bleichrodt RP, Boerman OC (2003) Experimental radioimmunotherapy of small peritoneal metastases of colorectal origin. Int J Cancer 106:965–972

    Article  PubMed  CAS  Google Scholar 

  28. Koppe MJ, Bleichrodt RP, Soede AC, Verhofstad AA, Goldenberg DM, Oyen WJ, Boerman OC (2004) Biodistribution and therapeutic efficacy of (125/131)I-, (186)Re-, (88/90)Y-, or (177)Lu-labeled monoclonal antibody MN-14 to carcinoembryonic antigen in mice with small peritoneal metastases of colorectal origin. J Nucl Med 45:1224–1232

    PubMed  CAS  Google Scholar 

  29. Shao J, Sheng H, Inoue H, Morrow JD, DuBois RN (2000) Regulation of constitutive cyclooxygenase-2 expression in colon carcinoma cells. J Biol Chem 275:33951–33956

    Article  PubMed  CAS  Google Scholar 

  30. Barden J, Edwards JE, McQuay HJ, Moore RA (2003) Oral valdecoxib and injected parecoxib for acute postoperative pain: a quantitative systematic review. BMC Anesthesiol 3:1

    Article  PubMed  Google Scholar 

  31. Stichtenoth DO (2004) The second generation of COX-2 inhibitors: clinical pharmacological point of view. Mini Rev Med Chem 4:617–624

    PubMed  CAS  Google Scholar 

  32. Padi SS, Jain NK, Singh S, Kulkarni SK (2004) Pharmacological profile of parecoxib: a novel, potent injectable selective cyclooxygenase-2 inhibitor. Eur J Pharmacol 491:69–76

    Article  PubMed  CAS  Google Scholar 

  33. Cheer SM, Goa KL (2001) Parecoxib (parecoxib sodium). Drugs 61:1133–1141

    Article  PubMed  CAS  Google Scholar 

  34. Talley JJ, Bertenshaw SR, Brown DL, Carter JS, Graneto MJ, Kellogg MS, Koboldt CM, Yuan J, Zhang YY, Seibert K (2000) N-[[(5-methyl-3-phenylisoxazol-4-yl)-phenyl]sulfonyl]propanamide, sodium salt, parecoxib sodium: a potent and selective inhibitor of COX-2 for parenteral administration. J Med Chem 43:1661–1663

    Article  PubMed  CAS  Google Scholar 

  35. O’Donghue GT, Roche-Nagel G, Harmey JH, Bouchier-Hayes DJ (2003) Cyclooxygenase-2 inhibition attenuates surgically induced residual tumour growth and metastases following cytoreductive surgery in a murine model of breast cancer. J Surg Res 114:227

    Google Scholar 

  36. Smakman N, Kranenburg O, Vogten JM, Bloemendaal AL, van Diest P, Borel RI (2005) Cyclooxygenase-2 is a target of KRASD12, which facilitates the outgrowth of murine C26 colorectal liver metastases. Clin Cancer Res 11:41–48

    PubMed  CAS  Google Scholar 

  37. Hansen HJ, Goldenberg DM, Newman ES, Grebenau R, Sharkey RM (1993) Characterization of second-generation monoclonal antibodies against carcinoembryonic antigen. Cancer 71:3478–3485

    Article  PubMed  CAS  Google Scholar 

  38. Ey PL, Prowse SJ, Jenkin CR (1978) Isolation of pure IgG1, IgG2a and IgG2b immunoglobulins from mouse serum using protein A-sepharose. Immunochemistry 15:429–436

    Article  PubMed  CAS  Google Scholar 

  39. Lindmo T, Boven E, Cuttitta F, Fedorko J, Bunn PA Jr (1984) Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J Immunol Methods 72:77–89

    Article  PubMed  CAS  Google Scholar 

  40. Eggermont AM, Steller EP, Sugarbaker PH (1987) Laparotomy enhances intraperitoneal tumor growth and abrogates the antitumor effects of interleukin-2 and lymphokine-activated killer cells. Surgery 102:71–78

    PubMed  CAS  Google Scholar 

  41. Alsalameh S, Burian M, Mahr G, Woodcock BG, Geisslinger G (2003) Review article: the pharmacological properties and clinical use of valdecoxib, a new cyclo-oxygenase-2-selective inhibitor. Aliment Pharmacol Ther 17:489–501

    Article  PubMed  CAS  Google Scholar 

  42. Gierse JK, Zhang Y, Hood WF, Walker MC, Trigg JS, Maziasz TJ, Koboldt CM, Muhammad JL, Zweifel BS, Masferrer JL, Isakson PC, Seibert K (2004) Valdecoxib: assessment of COX-2 potency and selectivity. J Pharmacol Exp Ther 312(3):1206–121

    Article  PubMed  CAS  Google Scholar 

  43. Hood WF, Gierse JK, Isakson PC, Kiefer JR, Kurumbail RG, Seibert K, Monahan JB (2003) Characterization of celecoxib and valdecoxib binding to cyclooxygenase. Mol Pharmacol 63:870–877

    Article  PubMed  CAS  Google Scholar 

  44. Zhang JY, Yuan JJ, Wang YF, Bible RH Jr, Breau AP (2003) Pharmacokinetics and metabolism of a COX-2 inhibitor, valdecoxib, in mice. Drug Metab Dispos 31:491–501

    Article  PubMed  CAS  Google Scholar 

  45. Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN (1998) Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell 93:705–716

    Article  PubMed  CAS  Google Scholar 

  46. Rozic JG, Chakraborty C, Lala PK (2001) Cyclooxygenase inhibitors retard murine mammary tumor progression by reducing tumor cell migration, invasiveness and angiogenesis. Int J Cancer 93:497–506

    Article  PubMed  CAS  Google Scholar 

  47. Sawaoka H, Tsuji S, Tsujii M, Gunawan ES, Sasaki Y, Kawano S, Hori M (1999) Cyclooxygenase inhibitors suppress angiogenesis and reduce tumor growth in vivo. Lab Invest 79:1469–1477

    PubMed  CAS  Google Scholar 

  48. Buchsbaum DJ, Roberson PL (1996) Experimental radioimmunotherapy: biological effectiveness and comparison with external beam radiation. Recent Results Cancer Res 141:9–18

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Part of this study was supported by a grant from the Netherlands Organization for Health Research and Development (ZonMw); Grant number: 920-03-220. The authors wish to thank Mr Hennie Eikholt, animal technician, for technical assistance during the experiments, and Ms. Anneke Voss, for her help in the histopathological examination.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel J. Koppe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koppe, M.J., Oyen, W.J.G., Bleichrodt, R.P. et al. Combination therapy using the cyclooxygenase-2 inhibitor Parecoxib and radioimmunotherapy in nude mice with small peritoneal metastases of colonic origin. Cancer Immunol Immunother 55, 47–55 (2006). https://doi.org/10.1007/s00262-005-0704-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0704-3

Keywords

Navigation