Skip to main content

Advertisement

Log in

Anti-tumor immune responses following neoadjuvant immunotherapy with a recombinant adenovirus expressing HSP72 to rodent tumors

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Gene modification of tumor cells is commonly utilized in various strategies of immunotherapy preventive both as treatment and a means to modify tumor growth. Gene transfer prior to surgery as neoadjuvant therapy has not been studied systematically. We addressed, whether direct intra-tumoral injection of a recombinant adenovirus expressing the immunomodulatory molecule, heat shock protein 72 (ADHSP72), administered prior to surgery could result in sustainable anti-tumor immune responses capable of affecting tumor progression and survival in a number of different murine and rat tumor models. Using intra-dermal murine models of melanoma (B16), colorectal carcinoma (CT26), prostate cancer (TrampC2) and a rat model of glioblastoma (9L), tumors were treated with vehicle or GFP expressing adenovirus (ADGFP) or ADHSP72. Tumors were surgically excised after 72 h. Approximately 25–50% of animals in the ADHSP72 treatment group but not in control groups showed sustained resistance to subsequent tumor challenge. Tumor resistance was associated with development of anti-tumor cellular immune responses. Efficacy of ADHSP72 as neoadjuvant therapy was dependent on the size of the initial tumor with greater likelihood of immune response generation and tumor resistance associated with smaller tumor size at initial treatment. ADHSP72 neoadjuvant therapy resulted in prolonged survival of animals upon re-challenge with autologous tumor cells compared to ADGFP or vehicle control groups. To study the effects on tumor progression of distant metastases, a single tumor focus of animals with multifocal intra-dermal tumors was treated. ADHSP72 diminished progression of the secondary tumor focus and prolonged survival, but only when the secondary tumor focus was <50 mm3 . Our results indicate that gene modification of tumors prior to surgical intervention may be beneficial to prevent recurrence in specific circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Quan WD Jr, Palackdharry CS (1997) Common cancers–immunotherapy and multidisciplinary therapy: parts III and IV. Dis Mon 43:745–808

    PubMed  Google Scholar 

  2. Morse MA et al (2002) The feasibility and safety of immunotherapy with dendritic cells loaded with CEA mRNA following neoadjuvant chemoradiotherapy and resection of pancreatic cancer. Int J Gastrointest Cancer 32:1–6

    Article  CAS  PubMed  Google Scholar 

  3. Delman KA et al (2002) Efficacy of multiagent herpes simplex virus amplicon-mediated immunotherapy as adjuvant treatment for experimental hepatic cancer. Ann Surg 236:337–342; discussion 342–333

    Article  PubMed  Google Scholar 

  4. Buter J, Pinedo HM (2003) Neoadjuvant chemoimmunotherapy in locally advanced breast cancer: a new avenue to be explored. Curr Oncol Rep 5:171–176

    PubMed  Google Scholar 

  5. Bodar E et al (2002) Immunologic and biologic properties of the primary tumor during prolonged neoadjuvant chemoimmunotherapy. Oncology (Huntingt) 16:32–39

    Google Scholar 

  6. Sabel MS et al (2004) Intratumoral IL-12 and TNF-alpha-loaded microspheres lead to regression of breast cancer and systemic antitumor immunity. Ann Surg Oncol 11:147–156

    Article  PubMed  Google Scholar 

  7. Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396

    Article  CAS  PubMed  Google Scholar 

  8. Blachere NE, Srivastava PK (1995) Heat shock protein-based cancer vaccines and related thoughts on immunogenicity of human tumors. Semin Cancer Biol 6:349–355

    Article  CAS  PubMed  Google Scholar 

  9. Li Z, Menoret A, Srivastava P (2002) Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol 14:45–51

    Article  CAS  PubMed  Google Scholar 

  10. Benihoud K, Yeh P, Perricaudet M (1999) Adenovirus vectors for gene delivery. Curr Opin Biotechnol 10:440–447

    Article  CAS  PubMed  Google Scholar 

  11. Chuah MK, Collen D, VandenDriessche T (2003) Biosafety of adenoviral vectors. Curr Gene Ther 3:527–543

    CAS  PubMed  Google Scholar 

  12. Huang C et al (2004) Potent antitumor effect elicited by superantigen-linked tumor cells transduced with heat shock protein 70 gene. Cancer Sci 95:160–167

    CAS  PubMed  Google Scholar 

  13. Okada T et al (2001) AV TK-mediated killing of subcutaneous tumors in situ results in effective immunization against established secondary intracranial tumor deposits. Gene Ther 8:1315–1322

    Article  CAS  PubMed  Google Scholar 

  14. Xu D et al (2004) NK and CD8+ T cell-mediated eradication of poorly immunogenic B16-F10 melanoma by the combined action of IL-12 gene therapy and 4–1BB costimulation. Int J Cancer 109:499–506

    Article  CAS  PubMed  Google Scholar 

  15. Kikuchi T, Moore MA, Crystal RG (2000) Dendritic cells modified to express CD40 ligand elicit therapeutic immunity against preexisting murine tumors. Blood 96:91–99

    CAS  PubMed  Google Scholar 

  16. Kwon ED et al (1999) Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy. Proc Natl Acad Sci USA 96:15074–15079

    Article  CAS  PubMed  Google Scholar 

  17. D’Angelica M et al (1999) Herpes simplex virus (HSV)-mediated ICAM-1 gene transfer abrogates tumorigenicity and induces anti-tumor immunity. Mol Med 5:606–616

    CAS  PubMed  Google Scholar 

  18. Townsend SE, Su FW, Atherton JM, Allison JP (1994) Specificity and longevity of antitumor immune responses induced by B7-transfected tumors. Cancer Res 54:6477–6483

    CAS  PubMed  Google Scholar 

  19. Martin-Fontecha A et al (1996) Heterogeneous effects of B7–1 and B7–2 in the induction of both protective and therapeutic anti-tumor immunity against different mouse tumors. Eur J Immunol 26:1851–1859

    CAS  PubMed  Google Scholar 

  20. Kikuchi T, Crystal RG (1999) Anti-tumor immunity induced by in vivo adenovirus vector-mediated expression of CD40 ligand in tumor cells. Hum Gene Ther 10:1375–1387

    Article  CAS  PubMed  Google Scholar 

  21. Lee CT et al (1997) Genetic immunotherapy of established tumors with adenovirus-murine granulocyte-macrophage colony-stimulating factor. Hum Gene Ther 8:187–193

    CAS  PubMed  Google Scholar 

  22. Brockstedt DG et al (2002) Development of anti-tumor immunity against a non-immunogenic mammary carcinoma through in vivo somatic GM-CSF, IL-2, and HSVtk combination gene therapy. Mol Ther 6:627–636

    Article  CAS  PubMed  Google Scholar 

  23. Park KH et al (2003) Gene therapy with GM-CSF, interleukin-4 and herpes simplex virus thymidine kinase shows strong antitumor effect on lung cancer. Anticancer Res 23:1559–1564

    CAS  PubMed  Google Scholar 

  24. Mazzolini G, Prieto J, Melero I (2003) Gene therapy of cancer with interleukin-12. Curr Pharm Des 9:1981–1991

    Article  CAS  PubMed  Google Scholar 

  25. Schagen FH, Ossevoort M, Toes RE, Hoeben RC (2004) Immune responses against adenoviral vectors and their transgene products: a review of strategies for evasion. Crit Rev Oncol Hematol 50:51–70

    PubMed  Google Scholar 

  26. Clark PR, Menoret A (2001) The inducible Hsp70 as a marker of tumor immunogenicity. Cell Stress Chaperones 6:121–125

    Article  CAS  PubMed  Google Scholar 

  27. Massa C et al (2004) Enhanced efficacy of tumor cell vaccines transfected with secretable hsp70. Cancer Res 64:1502–1508

    CAS  PubMed  Google Scholar 

  28. Blachere NE et al (1993) Heat shock protein vaccines against cancer. J Immunother 14:352–356

    CAS  PubMed  Google Scholar 

  29. Todryk SM, Gough MJ, Pockley AG (2003) Facets of heat shock protein 70 show immunotherapeutic potential. Immunology 110:1–9

    Article  CAS  Google Scholar 

  30. Ito A, Matsuoka F, Honda H, Kobayashi T (2004) Antitumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Immunol Immunother 53:26–32

    Article  CAS  PubMed  Google Scholar 

  31. Todryk S et al (1999) Heat shock protein 70 induced during tumor cell killing induces Th1 cytokines and targets immature dendritic cell precursors to enhance antigen uptake. J Immunol 163:1398–1408

    CAS  PubMed  Google Scholar 

  32. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313

    Article  CAS  PubMed  Google Scholar 

  33. Wells AD et al (1998) Hsp72-mediated augmentation of MHC class I surface expression and endogenous antigen presentation. Int Immunol 10:609–617

    Article  CAS  PubMed  Google Scholar 

  34. Ito A et al (2001) Augmentation of MHC class I antigen presentation via heat shock protein expression by hyperthermia. Cancer Immunol Immunother 50:515–522

    Article  CAS  PubMed  Google Scholar 

  35. Shah M (1996) Tumor imunity following adenovirus mediated herpes simplex thymidine kinase gene transfer to experimental rat gliomas. Anatomy and Neurobiology Medical College of Virginia, Richmond

    Google Scholar 

  36. den Brok MH et al (2004) In situ tumor ablation creates an antigen source for the generation of antitumor immunity. Cancer Res 64:4024–4029

    CAS  PubMed  Google Scholar 

  37. Huang XF et al (2003) A broadly applicable, personalized heat shock protein-mediated oncolytic tumor vaccine. Cancer Res 63:7321–7329

    CAS  PubMed  Google Scholar 

  38. Mulders P et al (1998) Adenovirus-mediated interleukin-2 production by tumors induces growth of cytotoxic tumor-infiltrating lymphocytes against human renal cell carcinoma. J Immunother 21:170–180

    CAS  PubMed  Google Scholar 

  39. Wolf JK et al (2004) A phase I study of Adp53 (INGN 201; ADVEXIN) for patients with platinum- and paclitaxel-resistant epithelial ovarian cancer. Gynecol Oncol 94:442–448

    Article  CAS  PubMed  Google Scholar 

  40. Ip SM, Huang TG, Yeung WS, Ngan HY (2001) pRb-expressing adenovirus Ad5-Rb attenuates the p53-induced apoptosis in cervical cancer cell lines. Eur J Cancer 37:2475–2483

    Article  CAS  PubMed  Google Scholar 

  41. Vassaux G, Martin-Duque P (2004) Use of suicide genes for cancer gene therapy: study of the different approaches. Expert Opin Biol Ther 4:519–530

    CAS  PubMed  Google Scholar 

  42. Rosenberg E et al (2002) Radiosensitization of human glioma cells in vitro and in vivo with acyclovir and mutant HSV-TK75 expressed from adenovirus. Int J Radiat Oncol Biol Phys 52:831–836

    Google Scholar 

  43. Okubo S et al (2001) Gene transfer of heat-shock protein 70 reduces infarct size in vivo after ischemia/reperfusion in the rabbit heart. Circulation 103:877–881

    CAS  PubMed  Google Scholar 

  44. Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J Gen Virol 36:59–74

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Priya Gopalan for review of the manuscript. This work was, in part, supported by the Molecular Medicine Grant at Baylor College of Medicine, Houston, TX and a bridge grant from the Saint Louis University Cancer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maulik R. Shah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krewet, J.A., Ren, W., Huang, X.F. et al. Anti-tumor immune responses following neoadjuvant immunotherapy with a recombinant adenovirus expressing HSP72 to rodent tumors. Cancer Immunol Immunother 54, 988–998 (2005). https://doi.org/10.1007/s00262-005-0683-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0683-4

Keywords

Navigation