Skip to main content

Advertisement

Log in

Functional endogenous cytotoxic T lymphocytes are generated to multiple antigens co-expressed by progressing tumors; after intra-tumoral IL-2 therapy these effector cells eradicate established tumors

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumors contain many antigens that may be recognized by the immune system. It is not known whether these antigens, and the epitopes within these antigens, can all be recognized by the anti-tumor immune response or if such responses are restricted to a few dominant epitopes. Effector function of endogenous cytotoxic T lymphocytes (CTL) generated during tumor progression has previously been assessed by indirect, ex vivo assays, which often focused on a single antigen. Therefore, we evaluated the endogenous in vivo CTL response to multiple neo tumor antigens using murine Lewis lung carcinoma tumor cells transfected with ovalbumin or a polyepitope construct. Both express multiple MHC class I-restricted epitopes. Ovalbumin contains a known hierarchy of epitopes for given MHC molecules, whilst the polyepitope expresses a number of dominant epitopes. We show that as tumors progress, potent effector CTL are generated in vivo that are restricted to dominant epitopes; we did not see the responses to subdominant or cryptic epitopes. Our data show that the CTL recognizing tumor antigens vary in their lytic capacity, as the CTL responding to two of the four epitopes were particularly potent killers. The presence of these effector CTLs did not prevent tumor growth. However, intra-tumoral IL-2 treatment altered the potency, but not the hierarchy, of these CTL such that they mediated tumor regression. These results have implications for immunotherapy protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

CM:

Complete media

DLN:

Draining lymph node

LL:

Lewis lung carcinoma

LN:

Lymph node

TIL:

Tumor-infiltrating lymphocyte

sOVA:

Secretory ovalbumin

References

  1. Ridgway D (2003) The first 1000 dendritic cell vaccinees. Cancer Invest 21(6):873

    Article  PubMed  Google Scholar 

  2. Stoler DL, Chen N, Basik M, Kahlenberg MS, Rodriguez-Bigas MA, Petrelli NJ, Anderson GR (1999) The onset and extent of genomic instability in sporadic colorectal tumor progression. Proc Natl Acad Sci USA 96(26):15121

    Article  PubMed  CAS  Google Scholar 

  3. Mashino K, Sadanaga N, Tanaka F, Yamaguchi H, Nagashima H, Inoue H, Sugimachi K, Mori M (2001) Expression of multiple cancer-testis antigen genes in gastrointestinal and breast carcinomas. Br J Cancer 85(5):713

    Article  PubMed  CAS  Google Scholar 

  4. Vandeneynde BJ, Vanderbruggen P (1997) T cell defined tumor antigens. Curr Opin Immunol 9(5):684

    Article  CAS  Google Scholar 

  5. Renkvist N, Castelli C, Robbins PF, Parmiani G (2001) A listing of human tumor antigens recognized by T cells. Cancer Immunol Immunother 50(1):3

    Article  PubMed  CAS  Google Scholar 

  6. Ioannides CG, Freedman RS, Platsoucas CD, Rashed S, Kim YP (1991) Cytotoxic T cell clones isolated from ovarian tumor-infiltrating lymphocytes recognize multiple antigenic epitopes on autologous tumor cells. J Immunol 146(5):1700

    PubMed  CAS  Google Scholar 

  7. Eifuku R, Yoshino II, Imahayashi S, Fujie H, Takenoyama M, Yoshimatsu T, Hanagiri T, So T, Ichiyoshi Y, Nomoto K, Yasumoto K (1998) Induction of tumor-specific cytotoxic T lymphocytes from regional lymph node lymphocytes of human breast cancer. Breast Cancer 5(4):367

    Article  PubMed  Google Scholar 

  8. Van den Eynde B, Hainaut P, Herin M, Knuth A, Lemoine C, Weynants P, van der Bruggen P, Fauchet R, Boon T (1989) Presence on a human melanoma of multiple antigens recognized by autologous CTL. Int J Cancer 44(4):634

    Article  PubMed  Google Scholar 

  9. Johnston JV, Malacko AR, Mizuno MT, McGowan P, Hellstrom I, Hellstrom KE, Marquardt H, Chen L (1996) B7-CD28 costimulation unveils the hierarchy of tumor epitopes recognized by major histocompatibility complex class I-restricted CD8+ cytolytic T lymphocytes. J Exp Med 183(3):791

    Article  PubMed  CAS  Google Scholar 

  10. Yewdell JW, Bennink JR (1999) Immunodominance in major histocompatibility complex class I-restricted T lymphocyte responses. Annu Rev Immunol 17:51

    Article  PubMed  CAS  Google Scholar 

  11. Chen W, Anton LC, Bennink JR, Yewdell JW (2000) Dissecting the multifactorial causes of immunodominance in class I- restricted T cell responses to viruses. Immunity 12(1):83

    Article  PubMed  CAS  Google Scholar 

  12. Flynn KJ, Belz GT, Altman JD, Ahmed R, Woodland DL, Doherty PC (1998) Virus-specific CD8+ T cells in primary and secondary influenza pneumonia. Immunity 8(6):683

    Article  PubMed  CAS  Google Scholar 

  13. Lehmann PV, Sercarz EE, Forsthuber T, Dayan CM, Gammon G (1993) Determinant spreading and the dynamics of the autoimmune T-cell repertoire. Immunol Today 14(5):203

    Article  PubMed  CAS  Google Scholar 

  14. Voskuhl RR, Farris RW II, Nagasato K, McFarland HF, Dalcq MD (1996) Epitope spreading occurs in active but not passive EAE induced by myelin basic protein. J Neuroimmunol 70(2):103

    Article  PubMed  CAS  Google Scholar 

  15. Newmaster RS, Mylin LM, Fu TM, Tevethia SS (1998) Role of a subdominant H-2Kd-restricted SV40 tumor antigen cytotoxic T lymphocyte epitope in tumor rejection. Virology 244(2):427

    Article  PubMed  CAS  Google Scholar 

  16. Pilon SA, Kelly C, Wei WZ (2003) Broadening of epitope recognition during immune rejection of ErbB-2-positive tumor prevents growth of ErbB-2-negative tumor. J Immunol 170(3):1202

    PubMed  CAS  Google Scholar 

  17. Feltkamp MC, Vreugdenhil GR, Vierboom MP, Ras E, van der Burg SH, ter Schegget J, Melief CJ, Kast WM (1995) Cytotoxic T lymphocytes raised against a subdominant epitope offered as a synthetic peptide eradicate human papillomavirus type 16-induced tumors. Eur J Immunol 25(9):2638

    Article  PubMed  CAS  Google Scholar 

  18. Disis ML, Gooley TA, Rinn K, Davis D, Piepkorn M, Cheever MA, Knutson KL, Schiffman K (2002) Generation of T-cell immunity to the HER-2/neu protein after active immunization with HER-2/neu peptide-based vaccines. J Clin Oncol 20(11):2624

    Article  PubMed  CAS  Google Scholar 

  19. Ranieri E, Kierstead LS, Zarour H, Kirkwood JM, Lotze MT, Whiteside T, Storkus WJ (2000) Dendritic cell/peptide cancer vaccines: clinical responsiveness and epitope spreading. Immunol Invest 29(2):121

    Article  PubMed  CAS  Google Scholar 

  20. el-Shami K, Tirosh B, Bar-Haim E, Carmon L, Vadai E, Fridkin M, Feldman M, Eisenbach L (1999) MHC class I-restricted epitope spreading in the context of tumor rejection following vaccination with a single immunodominant CTL epitope. Eur J Immunol 29(10):3295

    Article  PubMed  CAS  Google Scholar 

  21. Anderson BW, Kudelka AP, Honda T, Pollack MS, Gershenson DM, Gillogly MA, Murray JL, Ioannides CG (2000) Induction of determinant spreading and of Th1 responses by in vitro stimulation with HER-2 peptides. Cancer Immunol Immunother 49(9):459

    Article  PubMed  CAS  Google Scholar 

  22. Tatsumi T, Gambotto A, Robbins PD, Storkus WJ (2002) Interleukin 18 gene transfer expands the repertoire of antitumor Th1-type immunity elicited by dendritic cell-based vaccines in association with enhanced therapeutic efficacy. Cancer Res 62(20):5853

    PubMed  CAS  Google Scholar 

  23. Markiewicz MA, Fallarino F, Ashikari A, Gajewski TF (2001) Epitope spreading upon P815 tumor rejection triggered by vaccination with the single class I MHC-restricted peptide P1A. Int Immunol 13(5):625

    Article  PubMed  CAS  Google Scholar 

  24. Liau LM, Jensen ER, Kremen TJ, Odesa SK, Sykes SN, Soung MC, Miller JF, Bronstein JM (2002) Tumor immunity within the central nervous system stimulated by recombinant Listeria monocytogenes vaccination. Cancer Res 62(8):2287

    PubMed  CAS  Google Scholar 

  25. Lally KM, Mocellin S, Ohnmacht GA, Nielsen MB, Bettinotti M, Panelli MC, Monsurro V, Marincola FM (2001) Unmasking cryptic epitopes after loss of immunodominant tumor antigen expression through epitope spreading. Int J Cancer 93(6):841

    Article  PubMed  CAS  Google Scholar 

  26. Lipford GB, Hoffman M, Wagner H, Heeg K (1993) Primary in vivo responses to ovalbumin. Probing the predictive value of the Kb binding motif. J Immunol 150(4):1212

    PubMed  CAS  Google Scholar 

  27. Sandberg JK, Grufman P, Wolpert EZ, Franksson L, Chambers BJ, Karre K (1998) Superdominance among immunodominant H-2Kb-restricted epitopes and reversal by dendritic cell-mediated antigen delivery. J Immunol 160(7):3163

    PubMed  CAS  Google Scholar 

  28. Nelson DJ, Mukherjee S, Bundell C, Fisher S, van Hagen D, Robinson B (2001) Tumor progression despite efficient tumor antigen cross-presentation and effective “arming” of tumor antigen-specific CTL. J Immunol 166(9):5557

    PubMed  CAS  Google Scholar 

  29. Marzo AL, Lake RA, Robinson BW, Scott B (1999) T-cell receptor transgenic analysis of tumor-specific CD8 and CD4 responses in the eradication of solid tumors. Cancer Res 59(5):1071

    PubMed  CAS  Google Scholar 

  30. Jackaman C, Bundell CS, Kinnear BF, Smith AM, Filion P, van Hagen D, Robinson BW, Nelson DJ (2003) IL-2 intratumoral immunotherapy enhances CD8+ T cells that mediate destruction of tumor cells and tumor-associated vasculature: a novel mechanism for IL-2. J Immunol 171(10):5051

    PubMed  CAS  Google Scholar 

  31. Hogquist KA, Jameson SC, Heath WR, Howard JL, Bevan MJ, Carbone FR (1994) T cell receptor antagonist peptides induce positive selection. Cell 76(1):17

    Article  PubMed  CAS  Google Scholar 

  32. Moore MW, Carbone FR, Bevan MJ (1988) Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 54(6):777

    Article  PubMed  CAS  Google Scholar 

  33. Boyle JS, Koniaras C, Lew AM (1997) Influence of cellular location of expressed antigen on the efficacy of DNA vaccination: cytotoxic T lymphocyte and antibody responses are suboptimal when antigen is cytoplasmic after intramuscular DNA immunization. Int Immunol 9(12):1897

    Article  PubMed  CAS  Google Scholar 

  34. Nishimura A, Morita M, Nishimura Y, Sugino Y (1990) A rapid and highly efficient method for preparation of competent Escherichia coli cells. Nucleic Acids Res 18(20):6169

    Article  PubMed  CAS  Google Scholar 

  35. Lyons AB, Parish CR (1994) Determination of lymphocyte division by flow cytometry. J Immunol Methods 171(1):131

    Article  PubMed  CAS  Google Scholar 

  36. Oehen S, Brduscha-Riem K (1998) Differentiation of naive CTL to effector and memory ctl: correlation of effector function with phenotype and cell division. J Immunol 161(10):5338

    PubMed  CAS  Google Scholar 

  37. Nelson D, Bundell C, Robinson B (2000) In vivo cross-presentation of a soluble protein antigen: kinetics, distribution, and generation of effector CTL recognizing dominant and subdominant epitopes. J Immunol 165(11):6123

    PubMed  CAS  Google Scholar 

  38. Chen W, Khilko S, Fecondo J, Margulies DH, McCluskey J (1994) Determinant selection of major histocompatibility complex class I-restricted antigenic peptides is explained by class I-peptide affinity and is strongly influenced by nondominant anchor residues. J Exp Med 180(4):1471

    Article  PubMed  CAS  Google Scholar 

  39. Le TT, Drane D, Malliaros J, Cox JC, Rothel L, Pearse M, Woodberry T, Gardner J, Suhrbier A (2001) Cytotoxic T cell polyepitope vaccines delivered by ISCOMs. Vaccine 19(32):4669

    Article  PubMed  CAS  Google Scholar 

  40. Schirmbeck R, Fissolo N, Chaplin P, Reimann J (2003) Enhanced priming of multispecific, murine CD8+ T cell responses by DNA vaccines expressing stress protein-binding polytope peptides. J Immunol 171(3):1240

    PubMed  CAS  Google Scholar 

  41. Gurova KV, Roklin OW, Krivokrysenko VI, Chumakov PM, Cohen MB, Feinstein E, Gudkov AV (2002) Expression of prostate specific antigen (PSA) is negatively regulated by p53. Oncogene 21(1):153

    Article  PubMed  CAS  Google Scholar 

  42. Butterfield LH, Koh A, Meng W, Vollmer CM, Ribas A, Dissette V, Lee E, Glaspy JA, McBride WH, Economou JS (1999) Generation of Human T-cell Responses to an HLA-A2.1-restricted peptide epitope derived from alpha-Fetoprotein. Cancer Res 59(13):3134

    PubMed  CAS  Google Scholar 

  43. Chen L, Mizuno M, Singhal M, Hu S, Galloway D, Hellstrom I, Hellstrom K (1992) Induction of cytotoxic T lymphocytes specific for a syngeneic tumor expressing the E6 oncoprotein of human papillomavirus type 16. J Immunol 148(8):2617

    PubMed  CAS  Google Scholar 

  44. Thornburg C, Boczkowski D, Gilboa E, Nair SK (2000) Induction of cytotoxic T lymphocytes with dendritic cells transfected with human papillomavirus E6 and E7 RNA: implications for cervical cancer immunotherapy. J Immunother 23(4):412

    Article  PubMed  CAS  Google Scholar 

  45. Marzo AL, Lake RA, Lo D, Sherman L, McWilliam A, Nelson D, Robinson BW, Scott B (1999) Tumor antigens are constitutively presented in the draining lymph nodes. J Immunol 162(10):5838

    PubMed  CAS  Google Scholar 

  46. Thomson SA, Elliott SL, Sherritt MA, Sproat KW, Coupar BE, Scalzo AA, Forbes CA, Ladhams AM, Mo XY, Tripp RA, Doherty PC, Moss DJ, Suhrbier A (1996) Recombinant polyepitope vaccines for the delivery of multiple CD8 cytotoxic T cell epitopes. J Immunol 157(2):822

    PubMed  CAS  Google Scholar 

  47. Mateo L, Gardner J, Chen Q, Schmidt C, Down M, Elliott SL, Pye SJ, Firat H, Lemonnier FA, Cebon J, Suhrbier A (1999) An HLA-A2 polyepitope vaccine for melanoma immunotherapy. J Immunol 163(7):4058

    PubMed  CAS  Google Scholar 

  48. Thomson SA, Sherritt MA, Medveczky J, Elliott SL, Moss DJ, Fernando GJ, Brown LE, Suhrbier A (1998) Delivery of multiple CD8 cytotoxic T cell epitopes by DNA vaccination. J Immunol 160(4):1717

    PubMed  CAS  Google Scholar 

  49. Anraku I, Harvey TJ, Linedale R, Gardner J, Harrich D, Suhrbier A, Khromykh AA (2002) Kunjin virus replicon vaccine vectors induce protective CD8+ T-cell immunity. J Virol 76(8):3791

    Article  PubMed  CAS  Google Scholar 

  50. Kawakami Y, Dang N, Wang X, Tupesis J, Robbins PF, Wang RF, Wunderlich JR, Yannelli JR, Rosenberg SA (2000) Recognition of shared melanoma antigens in association with major HLA-A alleles by tumor infiltrating T lymphocytes from 123 patients with melanoma. J Immunother 23(1):17

    Article  PubMed  CAS  Google Scholar 

  51. Evans E, Man S, Evans A, Borysiewicz L (1997) Infiltration of cervical cancer tissue with human papillomavirus-specific cytotoxic T-lymphocytes. Cancer Res 57(14):2943

    PubMed  CAS  Google Scholar 

  52. Robinson BW, Robinson C, Lake RA (2001) Localised spontaneous regression in mesothelioma—possible immunological mechanism. Lung Cancer 32(2):197

    Article  PubMed  CAS  Google Scholar 

  53. Folkman J, Kalluri R (2004) Cancer without disease. Nature 427(6977):787

    Article  PubMed  CAS  Google Scholar 

  54. Knutson KL, Disis ML (2005) Tumor antigen-specific T helper cells in cancer immunity and immunotherapy. Cancer Immunol Immunother 54(8):721–728

    Article  PubMed  CAS  Google Scholar 

  55. Weber J, Sondak VK, Scotland R, Phillip R, Wang F, Rubio V, Stuge TB, Groshen SG, Gee C, Jeffery GG, Sian S, Lee PP (2003) Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected Stage II melanoma. Cancer 97(1):186

    Article  PubMed  CAS  Google Scholar 

  56. Chiong B, Wong R, Lee P, Delto J, Scotland R, Lau R, Weber J (2004) Characterization of long-term effector-memory T-cell responses in patients with resected high-risk melanoma receiving a melanoma peptide vaccine. J Immunother 27(5):368

    Article  PubMed  CAS  Google Scholar 

  57. el-Shami K, Tirosh B, Bar-Haim E, Carmon L, Vadai E, Fridkin M, Feldman M, Eisenbach L (1999) MHC class I-restricted epitope spreading in the context of tumor rejection following vaccination with a single immunodominant CTL epitope. Eur J Immunol 29(10):3295

    Article  PubMed  CAS  Google Scholar 

  58. Lehmann F, Marchand M, Hainaut P, Pouillart P, Sastre X, Ikeda H, Boon T, Coulie PG (1995) Differences in the antigens recognized by cytolytic T cells on two successive metastases of a melanoma patient are consistent with immune selection. Eur J Immunol 25(2):340

    Article  PubMed  CAS  Google Scholar 

  59. Godelaine D, Carrasco J, Lucas S, Karanikas V, Schuler-Thurner B, Coulie PG, Schuler G, Boon T, Van Pel A (2003) Polyclonal CTL responses observed in melanoma patients vaccinated with dendritic cells pulsed with a MAGE-3.A1 peptide. J Immunol 171(9):4893

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Health and Medical Research Council of Australia (NH&MRC), the State Government Insurance Commission (SGIC) and the RAINE Medical Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Delia J. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bundell, C.S., Jackaman, C., Suhrbier, A. et al. Functional endogenous cytotoxic T lymphocytes are generated to multiple antigens co-expressed by progressing tumors; after intra-tumoral IL-2 therapy these effector cells eradicate established tumors. Cancer Immunol Immunother 55, 933–947 (2006). https://doi.org/10.1007/s00262-005-0086-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0086-6

Keywords

Navigation