Skip to main content

Advertisement

Log in

Interferon-γ renders tumors that express low levels of Her-2/neu sensitive to cytotoxic T cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Her-2/neu is a tumor-associated antigen that has been targeted with both antibodies and cytotoxic T lymphocytes (CTL). Despite the isolation of Her-2/neu-reactive CTL in vaccinated patients, their therapeutic use has been limited by the observation that they often do not robustly recognize Her-2/neu+ tumors. We sought to determine the mechanism for this escape using Ag201P and Ag201M cells, which are murine osteosarcoma tumor lines that express a functional HLA-A2/Kb molecule. We now demonstrate that Ag201P and Ag201M express low levels of murine Her-2/neu, and that Ag201M was modestly and inconsistently recognized by an HLA-A2-restricted, Her-2/neu-reactive human CTL clone. In order to determine whether inefficient antigen processing might account for the weak recognition, COS-A2 cells were transfected with a short Her-2/neu minigene coding for the immunodominant Her-2/neu:369 epitope that did not require antigen processing or a long Her-2/neu minigene that did require antigen processing. Her-2/neu-reactive CTL clones only recognized COS-A2 cells transfected with the short minigene, indicating that lack of proper antigen processing could be responsible for the poor recognition of target cells. To confirm these results, it was demonstrated that following treatment with interferon-γ, both Ag201P and Ag201M robustly and consistently stimulated the CTL clones. Furthermore, CTL clone recognition was enhanced following interferon-γ treatment using another murine tumor line that expressed low levels of Her-2/neu (B16-A2/Kb). The enhanced recognition of Ag201P and Ag201M in the presence of interferon-γ was not due to an upregulation of Her-2/neu protein expression. Collectively, these results suggest that inefficient antigen processing of Her-2/neu can contribute to the lack of tumor recognition by CTL. These results also suggest that even tissues that express low levels of Her-2/neu might become CTL targets under conditions in which antigen processing is enhanced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

HLA:

Human leukocyte antigen

MHC:

Major histocompatibility complex

IFN:

Interferon

CTL:

cytotoxic T lymphocytes

References

  1. Holbro T, Civenni G, Hynes NE (2003) The ErbB receptors and their role in cancer progression. Exp Cell Res 284:99–110

    Article  PubMed  CAS  Google Scholar 

  2. Hellstrom I, Goodman G, Pullman J, Yang Y, Hellstrom KE (2001) Overexpression of HER-2 in ovarian carcinomas. Cancer Res 61:2420–2423

    PubMed  CAS  Google Scholar 

  3. Liu E, Thor A, He M, Barcos M, Ljung BM, Benz C (1992) The HER2 (c-erbB-2) oncogene is frequently amplified in in situ carcinomas of the breast. Oncogene 7:1027–1032

    PubMed  CAS  Google Scholar 

  4. Press MF, Jones LA, Godolphin W, Edwards CL, Slamon DJ (1990) HER-2/neu oncogene amplification and expression in breast and ovarian cancers. Prog Clin Biol Res 209–221

  5. Seliger B, Rongcun Y, Atkins D, Hammers S, Huber C, Storkel S, Kiessling R (2000) HER-2/neu is expressed in human renal cell carcinoma at heterogeneous levels independently of tumor grading and staging and can be recognized by HLA-A2.1-restricted cytotoxic T lymphocytes. Int J Cancer 87:349–359

    Article  PubMed  CAS  Google Scholar 

  6. Tsugawa K, Fushida S, Yonemura Y (1993) Amplification of the c-erbB-2 gene in gastric carcinoma:correlation with survival. Oncology 50:418–425

    PubMed  CAS  Google Scholar 

  7. Seshadri R, Firgaira FA, Horsfall DJ, McCaul K, Setlur V, Kitchen P (1993) Clinical significance of HER-2/neu oncogene amplification in primary breast cancer. The South Australian Breast Cancer Study Group. J Clin Oncol 11:1936–1942

    PubMed  CAS  Google Scholar 

  8. Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL (1987) Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science 235:177–182

    Article  PubMed  CAS  Google Scholar 

  9. Carter P, Presta L, Gorman CM, Ridgway JB, Henner D, Wong WL, Rowland AM, Kotts C, Carver ME, Shepard HM (1992) Humanization of an anti-p185HER2 antibody for human cancer therapy. Proc Natl Acad Sci USA 89:4285–4289

    Article  PubMed  CAS  Google Scholar 

  10. Ross JS, Fletcher JA, Linette GP, Stec J, Clark E, Ayers M, Symmans WF, Pusztai L, Bloom KJ (2003) The Her-2/neu gene and protein in breast cancer 2003: biomarker and target of therapy. Oncologist 8:307–325

    Article  PubMed  CAS  Google Scholar 

  11. Zaks TZ, Rosenberg SA (1998) Immunization with a peptide epitope (p369-377) from HER-2/neu leads to peptide-specific cytotoxic T lymphocytes that fail to recognize HER-2/neu+ tumors. Cancer Res 58:4902–4908

    PubMed  CAS  Google Scholar 

  12. Fisk B, Blevins TL, Wharton JT, Ioannides CG (1995) Identification of an immunodominant peptide of HER-2/neu protooncogene recognized by ovarian tumor-specific cytotoxic T lymphocyte lines. J Exp Med 181:2109–2117

    Article  PubMed  CAS  Google Scholar 

  13. Disis ML, Smith JW, Murphy AE, Chen W, Cheever MA (1994) In vitro generation of human cytolytic T-cells specific for peptides derived from the HER-2/neu protooncogene protein. Cancer Res 54:1071–1076

    PubMed  CAS  Google Scholar 

  14. Sotiropoulou PA, Perez SA, Voelter V, Echner H, Missitzis I, Tsavaris NB, Papamichail M, Baxevanis CN (2003) Natural CD8+ T-cell responses against MHC class I epitopes of the HER-2/neu oncoprotein in patients with epithelial tumors. Cancer Immunol Immunother 52:771–779

    Article  PubMed  CAS  Google Scholar 

  15. Kono K, Halapi E, Hising C, Petersson M, Gerdin E, Vanky F, Kiessling R (1997) Mechanisms of escape from CD8+ T-cell clones specific for the HER-2/neu proto-oncogene expressed in ovarian carcinomas: related and unrelated to decreased MHC class 1 expression. Int J Cancer 70:112–119

    Article  PubMed  CAS  Google Scholar 

  16. Lollini PL, Colombo MP, De Giovanni C, Nicoletti G, Parmiani G, Prodi G, Nanni P (1985) In vivo reexpression of H-2 antigens in B16 melanoma cells. Exp Clin Immunogenet 2:14–23

    PubMed  CAS  Google Scholar 

  17. Choudhury A, Charo J, Parapuram SK, Hunt RC, Hunt DM, Seliger B, Kiessling R (2004) Small interfering RNA (siRNA) inhibits the expression of the Her2/neu gene, upregulates HLA class I and induces apoptosis of Her2/neu positive tumor cell lines. Int J Cancer 108:71–77

    Article  PubMed  CAS  Google Scholar 

  18. Herrmann F, Lehr HA, Drexler I, Sutter G, Hengstler J, Wollscheid U, Seliger B (2004) HER-2/neu-mediated regulation of components of the MHC class I antigen processing pathway. Cancer Res 64:215–220

    Article  PubMed  CAS  Google Scholar 

  19. Kaplan BLF, Moore TV, Schreiber K, Callender GG, Schreiber H, Nishimura MI (2004) A new murine model for studying HLA-A2-restricted anti-tumor immunity. Cancer Lett 224:153–166

    PubMed  Google Scholar 

  20. Kono K, Rongcun Y, Charo J, Ichihara F, Celis E, Sette A, Appella E, Sekikawa T, Matsumoto Y, Kiessling R (1998) Identification of HER2/neu-derived peptide epitopes recognized by gastric cancer-specific cytotoxic T lymphocytes. Int J Cancer 78:202–208

    Article  PubMed  CAS  Google Scholar 

  21. Nagata Y, Furugen R, Hiasa A, Ikeda H, Ohta N, Furukawa K, Nakamura H, Kanematsu T, Shiku H (1997) Peptides derived from a wild-type murine proto-oncogene c-erbB-2/HER2/neu can induce CTL and tumor suppression in syngeneic hosts. J Immunol 159:1336–1343

    PubMed  CAS  Google Scholar 

  22. Zhou H, Randall RL, Brothman AR, Maxwell T, Coffin CM, Goldsby RE (2003) Her-2/neu expression in osteosarcoma increases risk of lung metastasis and can be associated with gene amplification. J Pediatr Hematol Oncol 25:27–32

    Article  PubMed  Google Scholar 

  23. Akatsuka T, Wada T, Kokai Y, Sawada N, Yamawaki S, Ishii S (2001) Loss of ErbB2 expression in pulmonary metastatic lesions in osteosarcoma. Oncology 60:361–366

    Article  PubMed  CAS  Google Scholar 

  24. Thomas DG, Giordano TJ, Sanders D, Biermann JS, Baker L (2002) Absence of HER2/neu gene expression in osteosarcoma and skeletal Ewing’s sarcoma. Clin Cancer Res 8:788–793

    PubMed  CAS  Google Scholar 

  25. Harada K, Yamada A, Mine T, Kawagoe N, Takasu H, Itoh K (2000) Mouse homologue of the human SART3 gene encoding tumor-rejection antigen. Jpn J Cancer Res 91:239–247

    PubMed  CAS  Google Scholar 

  26. Ishida H, Komiya S, Inoue Y, Yutani S, Inoue A, Itoh K (2000) Expression of the SART1 tumor-rejection antigen in human osteosarcomas. Int J Oncol 17:29–32

    PubMed  CAS  Google Scholar 

  27. Tsuda N, Murayama K, Ishida H, Matsunaga K, Komiya S, Itoh K, Yamada A (2001) Expression of a newly defined tumor-rejection antigen SART3 in musculoskeletal tumors and induction of HLA class I-restricted cytotoxic T lymphocytes by SART3-derived peptides. J Orthop Res 19:346–351

    Article  PubMed  CAS  Google Scholar 

  28. Houbiers JG, Nijman HW, van der Burg SH, Drijfhout JW, Kenemans P, van de Velde CJ, Brand A, Momburg F, Kast WM, Melief CJ (1993) In vitro induction of human cytotoxic T lymphocyte responses against peptides of mutant and wild-type p53. Eur J Immunol 23:2072–2077

    Article  PubMed  CAS  Google Scholar 

  29. Gnjatic S, Bressac-de Paillerets B, Guillet JG, Choppin J (1995) Mapping and ranking of potential cytotoxic T epitopes in the p53 protei: effect of mutations and polymorphism on peptide binding to purified and refolded HLA molecules. Eur J Immunol 25:1638–1642

    Article  PubMed  CAS  Google Scholar 

  30. Hoffmann TK, Nakano K, Elder EM, Dworacki G, Finkelstein SD, Appella E, Whiteside TL, DeLeo AB (2000) Generation of T cells specific for the wild-type sequence p53(264-272) peptide in cancer patients: implications for immunoselection of epitope loss variants. J Immunol 165:5938–5944

    PubMed  CAS  Google Scholar 

  31. Hoffmann TK, Loftus DJ, Nakano K, Maeurer MJ, Chikamatsu K, Appella E, Whiteside TL, DeLeo AB (2002) The ability of variant peptides to reverse the nonresponsiveness of T lymphocytes to the wild-type sequence p53(264-272) epitope. J Immunol 168:1338–1347

    PubMed  CAS  Google Scholar 

  32. Wurtzen PA, Claesson MH (2002) A HLA-A2 restricted human CTL line recognizes a novel tumor cell expressed p53 epitope. Int J Cancer 99:568–572

    Article  PubMed  CAS  Google Scholar 

  33. Vierboom MP, Nijman HW, Offringa R, van der Voort EI, van Hall T, van den Broek L, Fleuren GJ, Kenemans P, Kast WM, Melief CJ (1997) Tumor eradication by wild-type p53-specific cytotoxic T lymphocytes. J Exp Med 186:695–704

    Article  PubMed  CAS  Google Scholar 

  34. Brooks P, Murray RZ, Mason GG, Hendil KB, Rivett AJ (2000) Association of immunoproteasomes with the endoplasmic reticulum. Biochem J 352(Pt 3):611–615

    Article  PubMed  CAS  Google Scholar 

  35. Brooks P, Fuertes G, Murray RZ, Bose S, Knecht E, Rechsteiner MC, Hendil KB, Tanaka K, Dyson J, Rivett J (2000) Subcellular localization of proteasomes and their regulatory complexes in mammalian cells. Biochem J 346(Pt 1):155–161

    Article  PubMed  CAS  Google Scholar 

  36. Fruh K, Yang Y (1999) Antigen presentation by MHC class I and its regulation by interferon gamma. Curr Opin Immunol 11:76–81

    Article  PubMed  CAS  Google Scholar 

  37. Tanaka K, Tanahashi N, Tsurumi C, Yokota KY, Shimbara N (1997) Proteasomes and antigen processing. Adv Immunol 64:1–38

    PubMed  CAS  Google Scholar 

  38. Rongcun Y, Salazar-Onfray F, Charo J, Malmberg KJ, Evrin K, Maes H, Kono K, Hising C, Petersson M, Larsson O, Lan L, Appella E, Sette A, Celis E, Kiessling R (1999) Identification of new HER2/neu-derived peptide epitopes that can elicit specific CTL against autologous and allogeneic carcinomas and melanomas. J Immunol 163:1037–1044

    PubMed  CAS  Google Scholar 

  39. Van den Eynde BJ, Morel S (2001) Differential processing of class-I-restricted epitopes by the standard proteasome and the immunoproteasome. Curr Opin Immunol 13:147–153

    Article  PubMed  Google Scholar 

  40. Lindencrona JA, Preiss S, Kammertoens T, Schuler T, Piechocki M, Wei WZ, Seliger B, Blankenstein T, Kiessling R (2004) CD4+ T cell-mediated HER-2/neu-specific tumor rejection in the absence of B cells. Int J Cancer 109:259–264

    Article  PubMed  CAS  Google Scholar 

  41. Reilly RT, Machiels JP, Emens LA, Ercolini AM, Okoye FI, Lei RY, Weintraub D, Jaffee EM (2001) The collaboration of both humoral and cellular HER-2/neu-targeted immune responses is required for the complete eradication of HER-2/neu-expressing tumors. Cancer Res 61:880–883

    PubMed  CAS  Google Scholar 

  42. Gallo P, Dharmapuri S, Nuzzo M, Maldini D, Iezzi M, Cavallo F, Musiani P, Forni G, Monaci P (2005) Xenogeneic immunization in mice using HER2 DNA delivered by an adenoviral vector. Int J Cancer 113:67–77

    Article  PubMed  CAS  Google Scholar 

  43. Knutson KL, Schiffman K, Disis ML (2001) Immunization with a HER-2/neu helper peptide vaccine generates HER-2/neu CD8 T-cell immunity in cancer patients. J Clin Invest 107:477–484

    Article  PubMed  CAS  Google Scholar 

  44. Knutson KL, Disis ML (2002) Clonal diversity of the T-cell population responding to a dominant HLA-A2 epitope of HER-2/neu after active immunization in an ovarian cancer patient. Hum Immunol 63:547–557

    Article  PubMed  CAS  Google Scholar 

  45. Lollini PL, Nicoletti G, Landuzzi L, De Giovanni C, Rossi I, Di Carlo E, Musiani P, Muller WJ, Nanni P (1998) Down regulation of major histocompatibility complex class I expression in mammary carcinoma of HER-2/neu transgenic mice. Int J Cancer 77:937–941

    Article  PubMed  CAS  Google Scholar 

  46. Castilleja A, Ward NE, O’Brian CA, Swearingen B II, Swan E, Gillogly MA, Murray JL, Kudelka AP, Gershenson DM, Ioannides CG (2001) Accelerated HER-2 degradation enhances ovarian tumor recognition by CTL. Implications for tumor immunogenicity. Mol Cell Biochem 217:21–33

    Article  PubMed  CAS  Google Scholar 

  47. Hartmann F, Horak EM, Cho C, Lupu R, Bolen JB, Stetler-Stevenson MA, Pfreundschuh M, Waldmann TA, Horak ID (1997) Effects of the tyrosine-kinase inhibitor geldanamycin on ligand-induced Her-2/neu activation, receptor expression and proliferation of Her-2-positive malignant cell lines. Int J Cancer 70:221–229

    Article  PubMed  CAS  Google Scholar 

  48. Tikhomirov O, Carpenter G (2000) Geldanamycin induces ErbB-2 degradation by proteolytic fragmentation. J Biol Chem 275:26625–26631

    Article  PubMed  CAS  Google Scholar 

  49. Kominsky SL, Hobeika AC, Lake FA, Torres BA, Johnson HM (2000) Down-regulation of neu/HER-2 by interferon-gamma in prostate cancer cells. Cancer Res 60:3904–398

    PubMed  CAS  Google Scholar 

  50. Marth C, Muller-Holzner E, Greiter E, Cronauer MV, Zeimet AG, Doppler W, Eibl B, Hynes NE, Daxenbichler G (1990) Gamma-interferon reduces expression of the protooncogene c-erbB-2 in human ovarian carcinoma cells. Cancer Res 50:7037–7041

    PubMed  CAS  Google Scholar 

  51. Mishra S, Hamburger AW (1994) Interferon gamma-induced reduction in erbB-2 tyrosyl phosphorylation in human ovarian carcinoma cells. Int J Cancer 58:538–542

    Article  PubMed  CAS  Google Scholar 

  52. Epstein RJ, Druker BJ, Roberts TM, Stiles CD (1990) Modulation of a Mr 175,000 c-neu receptor isoform in G8/DHFR cells by serum starvation. J Biol Chem 265:10746–10751

    PubMed  CAS  Google Scholar 

  53. Huang SS, Koh HA, Konish Y, Bullock LD, Huang JS (1990) Differential processing and turnover of the oncogenically activated neu/erb B2 gene product and its normal cellular counterpart. J Biol Chem 265:3340–3346

    PubMed  CAS  Google Scholar 

  54. Castilleja A, Ward NE, Epstein RB, Kudelka AP, Gershenson DM, Efferson CL, O’Brian CA, Ioannides CG (2002) Treatment with HER-2 phosphorylation agonists enhance tumor ability to stimulate epitope specific CTL in vitro. Oncol Rep 9:929–935

    PubMed  CAS  Google Scholar 

  55. Reese DM, Slamon DJ (1997) HER-2/neu signal transduction in human breast and ovarian cancer. Stem Cells 15:1–8

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by National Institutes of Health Grants CA90873 and CA10228, and American Cancer Society, Illinois Division Grant 01-21 (to M.I.N.), and grants from the Swedish Cancer Society, the Swedish Research Medical Council, and the Cancer Society of Stockholm (to R.K.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael I. Nishimura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, B.L.F., Norell, H., Callender, G.G. et al. Interferon-γ renders tumors that express low levels of Her-2/neu sensitive to cytotoxic T cells. Cancer Immunol Immunother 55, 653–662 (2006). https://doi.org/10.1007/s00262-005-0050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-005-0050-5

Keywords

Navigation