Skip to main content

Advertisement

Log in

Lack of effective T-lymphocyte response to the PAX3/FKHR translocation area in alveolar rhabdomyosarcoma

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose: Alveolar rhabdomyosarcoma (ARMS) frequently contains the fusion transcription factor PAX3/FKHR. Therefore, clinical studies have been initiated to utilize the PAX3/FKHR translocation point area as a peptide vaccine against ARMS. Our study was directed at identifying antigenic T-lymphocyte epitopes at the PAX3/FKHR translocation point area. Experimental design: The peptide sequence surrounding the PAX3/FKHR translocation point was evaluated by MHC binding algorithms for potential T-lymphocyte antigenic epitopes (class I molecules HLA-A1, -A2 and -A3; class II molecules HLA-DR1, -DR4 and -DR7). Using in vitro techniques, dendritic cells loaded with PAX3/FKHR peptides were used to stimulate naïve T-lymphocytes. T-lymphocyte activity was then evaluated by 51Cr release and 3H-thymidine uptake assays. Results: Only one HLA-A3-restricted epitope was predicted by the algorithms. The peptide was prepared and tested for its ability to stimulate naïve cytotoxic T-lymphocytes (CTLs). Unfortunately, the peptide was unsuccessful at stimulating naïve CTL. However, induction of naïve helper T-lymphocytes (HTL) to recognize and respond to the PAX3/FKHR translocation peptide was successful. Yet, this HTL peptide activity did not translate into recognition of PAX3/FKHR-containing ARMS tumor cells. Conclusions: It appears that the fusion area of PAX3/FKHR may not be a good source of antigenic anti-tumor peptide epitopes. These results raise serious concerns about the success and applicability of future peptide-based vaccine immunotherapy directed at the PAX3/FKHR translocation point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Arndt CAS, Crist WM (1999) Common musculoskeletal tumors of childhood and adolescence. NEJM 341:342–352

    Article  CAS  PubMed  Google Scholar 

  2. Shapiro DN, Sublett JE, Li B, Downing JR, Naeve CW (1993) Fusion of PAX3 to a member of the forkhead family of transcription factors in human alveolar rhabdomyosarcoma. Cancer Res 53:5108–12

    CAS  PubMed  Google Scholar 

  3. Barr FG, Galili N, Holick J, Biegel JA, Rovera G, Emanuel BS (1993) Rearrangement of the PAX3 paired box gene in the paediatric solid tumour alveolar rhabdomyosarcoma. Nat Genet 3:113–117

    Article  CAS  PubMed  Google Scholar 

  4. Davis RJ, D’Cruz CM, Lovell MA, Biegel JA, Barr FG (1994) Fusion of PAX7 to FKHR by the variant t(1;13)(p36;q14) translocation in alveolar rhabdomyosarcoma. Cancer Res 54:2869–72

    CAS  PubMed  Google Scholar 

  5. Galili N, David RJ, Fredericks WJ, Mukhopadhyay S, Rauscher FJ III, Emmanuel BS, Rovera G, Barr FG (1993) Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 5:230–5

    Article  CAS  PubMed  Google Scholar 

  6. Fredericks WJ, Galili N, Mukhopadhyay S, Rovera G, Bennicelli J, Barr FG, Rauscher FJ III (1995) The PAX3-FKHR fusion protein created by the t(2;13) translocation in alveolar rhabdomyosarcoma in a more potent transcriptional activator than PAX3. Mol Cell Biol 15:1522–35

    CAS  PubMed  Google Scholar 

  7. Benicelli JL, Edwards RH, Barr FG (1995) Mechanism for transcriptional gain of function resulting from chromosomal translocation in alveolar rhabdomyosarcoma. Proc Natl Acad Sci U S A 93:5455–5459

    Article  Google Scholar 

  8. Epstein JA, Lam P, Jepeal L, Maas RL, Shapiro DN (1995) Pax3 inhibits myogenic differentiation of cultured myoblast cellss. J Biol Chem 270:11719–11722

    Article  CAS  PubMed  Google Scholar 

  9. Scheidler S, Fredericks WJ, Rauscher FJ III, Barr FG, Vogt PK (1996) The hybrid PAX3-FKHR fusion protein of alveolar rhabdomyosarcoma transforms fibroblasts in culture. Proc Natl Acad Sci U S A 93:9805–9

    Article  CAS  PubMed  Google Scholar 

  10. Pardoll DM (2000) Therapeutic vaccination for cancer. Clin Immunol 95:S44–S62

    Article  CAS  PubMed  Google Scholar 

  11. Bennett SRM, Carbone FR, Karamalis F, Miller JFAP, Heath WR (1997) Induction of a CD8+ cytotoxic T lymphocyte response by cross-priming requires cognate CD4+ T cell help. J Exp Med 186:65–70

    Article  CAS  PubMed  Google Scholar 

  12. Surman D, Dudley M, Overwijk W, Restifo N (2000) Cutting edge: CD4 + T cell control of CD8 + T cell reactivity to a model tumor antigen. J Immunol 164:562–565

    CAS  PubMed  Google Scholar 

  13. Pardoll D, Topalian S (1998) The role of CD4 + T cell responses in antitumor immunity. Curr Opin Immunol 10:588–594

    Article  CAS  PubMed  Google Scholar 

  14. Toes RE, Ossendorp F, Offringa R, Melief CJ (1999) CD4 T cells and their role in antitumor immune responses. J Exp Med 189:753–756

    Article  CAS  PubMed  Google Scholar 

  15. Topalian SL (1994) MHC class II restricted tumor antigens and the role of CD4+ T cells in cancer immunotherapy. Curr Opin Immunol 6:741

    Article  CAS  PubMed  Google Scholar 

  16. Dagher R, Long LM, Read EJ, Leitman SF, Carter CS, Tsokos M, Goletz TJ, Avila N, Berzofsky JA, Helman LJ, Mackall CL (2002) Pilot trial of tumor-specific peptide vaccination and continuous infusion interleukin-2 in patients with recurrent Ewing sarcoma and alveolar rhabdomyosarcoma: an inter-institute NIH study. Med Ped Oncol 38:158–164

    Article  Google Scholar 

  17. Rammensee H, Bachmann J, Emmerich NP, Bachor OA, Stenanovic S (1999) SYFPEITHI: database for MHC ligands and peptide motifs. Immunogenetics 50:213–219

    Article  CAS  PubMed  Google Scholar 

  18. Lu J, Celis E (2000)Use of two predictive algorithms of the World Wide Web for the identification of tumor-reactive T-cell epitopes. Cancer Res 60:5223–5227

    CAS  PubMed  Google Scholar 

  19. Kobayashi H, Wood M, Song Y, Appella E, Celis E (2000) Defining promiscuous MHC class II helper T-cell epitopes for the HER2/Neu tumor antigen. Cancer Res 60:5228–5236

    CAS  PubMed  Google Scholar 

  20. Lu J, Wettstein PJ, Higashimoto Y, Appella E, Celis E (2001) TAP-independent presentation of CTL epitopes by trojan antigens. J Immunol 166:7063–7071

    CAS  PubMed  Google Scholar 

  21. Kobayashi H, Song Y, Hoon D, Appella E, Celis E (2001) Tumor-reactive T helper lymphocytes recognize a promiscuous MAGE-3 epitope presented by various major histocompatibility complex class II alleles. Cancer Res 61:4773–8

    CAS  PubMed  Google Scholar 

  22. Smith JW II, Walker EB, Fox BA, Haley D, Wisner KP, Doran T, Fisher B, Justice L, Wood W, Vetto J, Maecker H, Dols A, Meijer S, Hu H-M, Romero P, Alvord WG, Urba WJ (2003) Adjuvant immunization of HLA-A2–positive melanoma patients with a modified gp100 peptide induces peptide-specific CD8+ T-cell responses. J Clin Oncol 21:1562–1573

    Article  CAS  PubMed  Google Scholar 

  23. Huarte E, Sarobe P, Lu J, Casares N, Lasarte JJ, Dotor J, Ruiz M, Prieto J, Celis E, Borras-Cuesta F (2002) Enhancing immunogenicity of a CTL epitope from carcinoembryonic antigen by selective amino acid replacements. Clin Cancer Res 8:2336–2344

    CAS  PubMed  Google Scholar 

  24. Kobayashi H, Omiya R, Ruiz M, Huarte E, Sarobe P, Lasarte JJ, Herraiz M, Sangro B, Prieto J, Borras-Cuesta F, Celis E (2002) Identification of an antigenic epitope for helper T lymphocytes from carcinoembryonic antigen. Clin Cancer Res 8:3219–3225

    CAS  PubMed  Google Scholar 

  25. Fernandez N, Duffour M-T, Perricaudet M, Lotze MT, Tursz T, Zitvogel L (1998) Active specific T-cell-based immunotherapy for cancer: nucleic acids, peptides, whole native proteins, recombinant viruses, with dendritic cell adjuvants or whole tumor cell-based vaccines. principles and future prospects, cytokines. Cell Mol Ther 4:53–65

    CAS  Google Scholar 

  26. Celis E (1984) Regulation of T-cell function by antibodies: enhancement of the response of human T-cell clones to hepatitis B surface antigen by antigen-specific monoclonal antibodies. Proc Natl Acad Sci U S A 81:6846–50

    CAS  PubMed  Google Scholar 

  27. Akiyama K, Ebihara S, Yada A, Matsumura K, Aiba S, Nukiwa T, Takai T (2003) Targeting apoptotic tumor cells to FcyR provides efficient and versatile vaccination against tumors by dendritic cells. J Immunol 1641–1648

  28. Mackall CL (2000) Targeting tumor specific translocations in sarcomas in pediatric patients for immunotherapy. Clin Orthop 373:25–31

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Rodeberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rodeberg, D.A., Nuss, R.A., Heppelmann, C.J. et al. Lack of effective T-lymphocyte response to the PAX3/FKHR translocation area in alveolar rhabdomyosarcoma. Cancer Immunol Immunother 54, 526–534 (2005). https://doi.org/10.1007/s00262-004-0625-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0625-6

Keywords

Navigation