Skip to main content
Log in

Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Antibody-targeted chemotherapy with immunoconjugates of calicheamicin is a clinically validated strategy in cancer therapy. This study describes the selection of a murine anti-CD22 mAb, m5/44, as a targeting agent, its conjugation to a derivative of calicheamicin (CalichDM) via either acid-labile or acid-stable linkers, the antitumor activity of CalichDM conjugated to m5/44, and its subsequent humanization by CDR grafting. Murine IgG1 mAb m5/44 was selected based on its subnanomolar affinity for CD22 and ability to be internalized into B cells. CalichDM conjugated to m5/44 caused potent growth inhibition of CD22+ human B-cell lymphomas (BCLs) in vitro. The conjugate of m5/44 with an acid-labile linker was more potent than an acid-stable conjugate, a nonbinding conjugate with a similar acid-labile linker, or unconjugated CalichDMH in inhibiting BCL growth. CalichDM conjugated to m5/44 caused regression of established BCL xenografts in nude mice. In contrast, both unconjugated m5/44 and a nonbinding conjugate were ineffective against these xenografts. Based on the potent antitumor activity of m5/44-CalichDM conjugates, m5/44 was humanized by CDR grafting to create g5/44, an IgG4 anti-CD22 antibody. Both m5/44 and g5/44 bound CD22 with subnanomolar affinity. Competitive blocking with previously characterized murine anti-CD22 mAbs suggested that g5/44 recognizes epitope A located within the first N-terminal Ig-like domain of human CD22. Antitumor efficacy of CalichDM conjugated to g5/44 against BCL xenografts was more potent than its murine counterpart. Based on these results, a calicheamicin conjugate of g5/44, CMC-544, was selected for further development as a targeted chemotherapeutic agent for the treatment of B-cell malignancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2
Fig. 3A–C
Fig. 4
Fig. 5a,b
Fig. 6a,b
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

AcBut:

4-(4′-Acetylphenoxy) butanoic acid

AcPAc:

(3-Acetylphenyl) acetic acid

ATC:

Antibody-targeted chemotherapy

BCL:

B-cell lymphoma

CalichDM:

N-Acetyl-γ-calicheamicin dimethyl disulfide derivative(s)

CalichDMA:

CalichDM acid

CalichDMH:

CalichDM hydrazide

CDR:

Complementarity determining region

NHL:

Non-Hodgkin’s lymphoma

PBMC:

Peripheral blood mononuclear cell

TAA:

Tumor-associated antigen

References

  1. Trail P, Bianchi A (1999) Monoclonal antibody drug conjugates in the treatment of cancer. Curr Opin Immunol 11:584

    Article  CAS  PubMed  Google Scholar 

  2. Dubowchik G, Walker M (1999) Receptor-mediated and enzyme-dependent targeting of cytotoxic anti-cancer drugs. Pharmacol Ther 83:67

    Article  CAS  PubMed  Google Scholar 

  3. Damle NK, Frost P (2003) Antibody-targeted chemotherapy with immunoconjugates of calicheamicin. Curr Opin Pharmacol 3:386

    Article  CAS  PubMed  Google Scholar 

  4. Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, Roy S, Sridhara R, Rahman A, Willaims G, Pazdur R (2001) Gemtuzumab ozogamicin: approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Cancer Res 7:1490

    CAS  PubMed  Google Scholar 

  5. Sievers E, Larson R, Stadmauer E, Estey E, Lowenberg BH, Dombret HC, Karanes C, Theobald M, Bennett JM, Sherman ML, Berger MA, Eten CB, Loken MR, van Dongen JJM, Bernstein ID, Appelbaum FR (2001) Efficacy and safety of gemtuzumab ozogamicin in patients with CD33-positive acute myeloid leukemia in first relapse. J Clin Oncol 19:3244

    CAS  PubMed  Google Scholar 

  6. Larson R, Boogaerts M, Estey E, Karanes C, Stadtmauer EA, Sievers EL, Mineur P, Bennett JM, Berger MS, Eten CB, Muntean M, Loken MR, van Dongen JJM, Bernstein ID, Applebaum FR (2002) Antibody-targeted chemotherapy of older patients with acute myeloid leukemia in first relapse using Mylotarg (gemtuzumab ozogamicin). Leukemia 16:1627

    Article  CAS  PubMed  Google Scholar 

  7. Berger M, Leopold L, Dowell J, Korth-Bradley J, Sherman M (2002) Licensure of gemtuzumab ozogamicin for the treatment of selected patients 60 years of age or older with acute myeloid leukemia in first relapse. Invest New Drugs 20:395

    Article  CAS  PubMed  Google Scholar 

  8. Hamann P, Hinman L, Beyer C, Lindh D, Upeslacis J, Flowers DA, Bernstein I (2002) An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia: choice of linker. Bioconjug Chem 3:40

    Article  Google Scholar 

  9. Hamann P, Hinman L, Hollander I, Beyer CF, Lindh D, Holcomb R, Hallett W, Tsou HR, Upeslacis J, Schohat D, Mountain A, Flowers DA, Bernstein I (2002) Gemtuzumab ozogamicin, a potent and selective anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Bioconjug Chem 13:47

    Article  CAS  PubMed  Google Scholar 

  10. Zein N, Sinha A, McGahren W, Ellestad G (1988) Calicheamicin γI: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 240:1198

    CAS  PubMed  Google Scholar 

  11. Lee MD, Dunne TS, Chang CC, Siegel MM, Morton GO, Ellestad GA, McGahren WJ, Borders DB (1992) Calicheamicins, a novel family of antibiotics, 4: Structural elucidations of calicheamicins. J Am Chem Soc 114:985

    CAS  Google Scholar 

  12. Thorson J, Sievers E, Ahlert J, Shepard E, Whitwam RE, Onwueme KC, Ruppen M (2000) Understanding and exploiting nature’s chemical arsenal: the past, present and future of calicheamicin research. Curr Pharm Des 6:1841

    CAS  PubMed  Google Scholar 

  13. Mylotarg label. http://www.fda.gov/cder/foi/label/2000/21174lbl.pdf

  14. Moyron-Quiroz JE, Partida-Sanchez S, Donis-Hernandez R, Sandoval-Montes C, Santos-Argumedo L (2002) Expression and function of CD22, a B-cell restricted molecule. Scand J Immunol 55:343

    Article  CAS  PubMed  Google Scholar 

  15. Tedder TF, Tuscano J, Sato S, Kehrl JH (1997) CD22, a B lymphocyte-specific adhesion molecule that regulates antigen receptor signaling. Ann Rev Immunol 15:481

    Article  CAS  Google Scholar 

  16. Crocker PR, Varki A (2001) Siglecs, sialic acids and innate immunity. Trends Immunol 22:337

    Article  CAS  PubMed  Google Scholar 

  17. Nitschke L, Floyd H, Crocker PR (2001) New functions for the sialic acid-binding adhesion molecule CD22, a member of the growing family of Siglecs. Scand J Immunol 53:227

    Article  CAS  PubMed  Google Scholar 

  18. Hanna R, Ong GL, Mattes MJ (1996) Processing of antibodies bound to B-cell lymphomas and other hematological malignancies. Cancer Res 56:3062

    CAS  PubMed  Google Scholar 

  19. Shan D, Press OW (1995) Constitutive endocytosis and degradation of CD22 by human B cells. J Immunol 154:4466

    CAS  PubMed  Google Scholar 

  20. Kreitman RJ, Wilson WH, Bergeron K, Raggio M, Stetler-Stevenson M, Fitzgerald DJ, Pastan I (2001) Efficacy of the anti-CD22 recombinant immunotoxin BL22 in chemotherapy-resistant hairy-cell leukemia. N Engl J Med 345:241

    Article  CAS  PubMed  Google Scholar 

  21. Pastan I, Kreitman RJ (2002) Immunotoxins in cancer therapy. Curr Opin Investig Drugs 3:1089

    CAS  PubMed  Google Scholar 

  22. Hursey M, Newton DL, Hansen HJ, Ruby D, Goldenberg DM, Rybak SM (2002) Specifically targeting the CD22 receptor of human B-cell lymphomas with RNA damaging agents: a new generation of therapeutics. Leuk Lymphoma 43:953

    CAS  PubMed  Google Scholar 

  23. Galfrè G, Howe SC, Milstein C (1977) Antibodies to major histocompatibility antigens produced by hybrid cell lines. Nature 266:550

    PubMed  Google Scholar 

  24. Morgan A, Jones ND, Nesbitt AM, Chaplin L, Bodmer MW, Emtage JS (1995) The N-terminal end of the CH2 domain of chimeric human IgG1 anti-HLA-DR is necessary for C1q, Fc gamma RI and Fc gamma RIII binding. Immunology 86:319

    CAS  PubMed  Google Scholar 

  25. Hinman LM, Hamann PR, Wallace R, Menendez AT, Dur FE, Upeslacis J (1993) Preparation and characterization of monoclonal antibody conjugates of the calicheamicins: a novel and potent family of antitumor antibiotics. Cancer Res 53:3336

    CAS  PubMed  Google Scholar 

  26. Coligan JE, Cruisbeek AM, Margulies DH, Shevach EM, Strober W (eds) (1992) Current protocols in immunology, vol 2. Wiley, New York

  27. Adair JR, Athwal DS, Emtage JS (1991) Humanised antibodies. International Patent Publication WO91/09967

  28. Owens RJ, Young RJ (1994) The genetic engineering of monoclonal antibodies. J Immunol Methods 168:149

    Article  CAS  PubMed  Google Scholar 

  29. Tomlinson IM, Walter G, Marks JD, Llewelyn MB, Winter G (1992) The repertoire of human germline VH segments reveals about fifty groups of VH segments with different hypervariable loops. J Mol Biol 227:776

    CAS  PubMed  Google Scholar 

  30. Cox JPL, Tomlinson IM, Winter G (1994) A directory of human germ-line V kappa segments reveals a strong bias in their usage. Eur J Immunol 24:827

    CAS  PubMed  Google Scholar 

  31. Kabat EA, Wu TT, Perry HM, Gottesman KS, Foeller C (1991) Sequences of proteins of immunological interest, 5th edn. Public Health Service, National Institutes of Health, Bethesda, MD

  32. Chothia C, Lesk AM, Tramontano A, Levitt M, Smith-Gill J, Air G, Sheriff S, Padlan EA, Davies D, Tulip WR, Colman PM, Spinelli S, Alzari PM, Poljak RJ (1989) Conformations of immunological hypervariable regions. Nature 342:877

    Article  CAS  PubMed  Google Scholar 

  33. Li JL, Shen GL, Ghetie MA, May RD, Till M, Ghetie V, Uhr JW, Janossy G, Thorpe PE, Amlot P (1989) The epitope specificity and tissue reactivity of four murine monoclonal anti-CD22 antibodies. Cell Immunol 118:85

    CAS  PubMed  Google Scholar 

  34. Engel P, Wagner N, Miller AS, Tedder TF (1995) Identification of the ligand-binding domains of CD22, a member of the immunoglobulin superfamily that uniquely binds a sialic acid-dependent ligand. J Exp Med 181:1581

    Article  CAS  PubMed  Google Scholar 

  35. Engel P, Wagner N, Smith H, Tedder TF (1995) Structure/function analysis of CD22: domains that mediate adhesion. In: Leukocyte typing V. Oxford University Press, Oxford, pp 526–527

  36. Stein R, Belisle E, Hansen HJ, Goldenberg DM (1993) Epitope specificity of the anti-(B cell lymphoma) monoclonal antibody, LL2. Cancer Immunol Immunother 37:293

    CAS  PubMed  Google Scholar 

  37. Griffiths GL, Govindan SV, Sharkey RM, Fisher DR, Goldenberg DM (2003) 90 Y-DOTA-hLL2: an agent for radioimmunotherapy of non-Hodgkin’s lymphoma. J Nucl Med 44:77

    CAS  PubMed  Google Scholar 

  38. DiJoseph JF, Armellino DC, Boghaert E, Khandke K, Dougher Sridharan L, Kunz A, Hamann PR, Gorovits B, Udata C, Moran JK, PopplewelL AG, Stephens S, Frost P, Damle NK (2004) Antibody-targeted chemotherapy with CMC-544: a CD22-targeted immunoconjugate of calicheamicin for the treatment of B lymphoid malignancies. Blood 103:1807

    Article  CAS  PubMed  Google Scholar 

  39. Hinman LM, Hamann PR, Upeslacis J (1995) Preparation of conjugates to monoclonal antibodies. In: Borders DB, Doyle TW (eds) Endiyne antibiotics as antitumor agents. Dekker, New York, pp 87–106

  40. Co MS, Queen C (1991) Humanized antibodies for therapy. Nature 351:501

    Article  CAS  PubMed  Google Scholar 

  41. Burton DR, Woof JM (1992) Human antibody effector function. Adv Immunol 51:1

    CAS  PubMed  Google Scholar 

  42. Greenwood J, Clark M, Waldmann H (1993) Structural motifs involved in human IgG antibody effector functions. Eur J Immunol 5:1098

    Google Scholar 

  43. Leonard JP, Coleman M, Ketas JC, Chadburn A, Ely S, Furman RR, Wegener WA, Hansen HJ, Ziccardi H, Eschenberg M, Gayko U, Cessano A, Goldenberg DM (2003) Phase I/II trial of epratuzumab (humanized anti-CD22 antibody) in indolent non-Hodgkin’s lymphoma. J Clin Oncol 21:3051

    Article  PubMed  Google Scholar 

  44. Tuscano JM, O’Donnell RT, Miers LA, Kroger LA, Kukis DL, Lambom KA, Tedder TF, DeNardo GL (2003) Anti-CD22 ligand-blocking antibody HB22.7 has independent lymphomacidal properties and augments the efficacy of 90 Y-DOTA-peptide-Lym-1 in lymphoma xenografts. Blood 101:3641

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr John Crocker of Birmingham Heartlands Hospital, Birmingham, UK, for the evaluation of m5/44 binding to the NHL biopsies; Dr Lyka Kalyandrug for studies with effector functions of antibodies; Fred Immerman for statistical evaluation of results; and Maureen Dougher and Latha Sridharan for assistance with various studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nitin K. Damle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

DiJoseph, J.F., Popplewell, A., Tickle, S. et al. Antibody-targeted chemotherapy of B-cell lymphoma using calicheamicin conjugated to murine or humanized antibody against CD22. Cancer Immunol Immunother 54, 11–24 (2005). https://doi.org/10.1007/s00262-004-0572-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0572-2

Keywords

Navigation