Skip to main content

Advertisement

Log in

In vivo cervical cancer growth inhibition by genetically engineered cytotoxic T cells

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose: The CD44 v7/8 splice variant that is frequently expressed in cervical carcinoma and rarely expressed in normal tissues displays promising properties as a target antigen for cancer immune therapy. In this study, cytotoxic T lymphocytes (CTLs) were genetically engineered to gain CD44v7/8 target specificity. Methods: Clone 96 (CI96), an established murine cytotoxic T-cell line, and naïve murine T cells were retrovirally transduced with a fusion gene construct encoding for the single chain fragment scFv of the monoclonal antibody VFF17 and for the ζ chain of the T-cell receptor (TCR). The therapeutic potential of genetically engineered T cells was tested in vitro and in vivo. Results: Surface expression of the chimeric TCR on infected Cl96 and naïve T cells was shown by FACS analysis. CD44v7/8-positive target cells were efficiently lysed by transduced Cl96 and naïve T cells, demonstrating the functionality and specificity of the chimeric TCR. In a xenograft BALB/c mouse model, efficient growth retardation of CD44v7/8-positive tumours was mediated by genetically engineered Cl96(VFF17)cyYZ cells. Conclusions: We were able to reprogramme the target specificity of recombinant Cl96 and naïve CTLs resulting in efficient cytolysis of CD44v7/8-positive cervical cancer cells. High transduction rates and the specific cytolysis of CD44v7/8-redirected CTLs are promising tools for an immune gene therapy approach for advanced cervical cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4a–f
Fig. 5

Similar content being viewed by others

Abbreviations

Ab:

Antibody

CTL:

Cytolytic T lymphocyte

mAb:

Monoclonal antibody

TCR:

T-cell receptor

References

  1. Abken H, Hombach A, Heuser C, Reinhold U (2001) A novel strategy in the elimination of disseminated melanoma cells: chimeric receptors endow T cells with tumor specificity. Recent Results Cancer Res 158:249

    CAS  PubMed  Google Scholar 

  2. Altenschmidt U, Kahl R, Moritz D, Schierle BS, Gerstmayer, Wels W, Groner B (1996) Cytolysis of tumor cells expressing the Neu/erbB-2, erbB-3 and erbB-4 receptors by genetically targeted naive T lymphocytes. Clin Cancer Res 2:1001

    CAS  PubMed  Google Scholar 

  3. Altenschmidt U, Klundt E, Groner B (1997) Adoptive transfer of in vitro-targeted, activated T lymphocytes results in total tumor regression. J Immunol 159(11):5509

    CAS  PubMed  Google Scholar 

  4. Appleman LJ, Tzachanis D, Grader-Beck T, van Puijenbroek AA, Boussiotis VA (2001) Helper T cell anergy: from biochemistry to cancer pathophysiology and therapeutics. J Mol Med 78(12):673

    Article  CAS  PubMed  Google Scholar 

  5. Arteaga CL, Hurd SD, Winner AR, Johnson MD, Fendley BM, Forbes JT (1993) Anti-transforming-growth-factor(TGF)-β antibodies inhibit breast-cancer—cell tumorigenicity and increase mouse-spleen natural killer cell activity. J Clin Invest 92:2569

    CAS  PubMed  Google Scholar 

  6. Byrne SN, Halliday GM (2003) High levels of Fas ligand and MHC class II in the absence of CD80 or CD86 expression and a decreased CD4+ T cell infiltration, enables murine skin tumours to progress. Cancer Immunol Immunother 52(6):396

    CAS  PubMed  Google Scholar 

  7. Cabrera T, Lopez-Nevot MA, Gaforio JJ, Ruiz-Cabello F, Garrido F (2003) Analysis of HLA expression in human tumor tissues. Cancer Immunol Immunother 52:1

    CAS  PubMed  Google Scholar 

  8. Chambers CA (2001) The expanding world of co-stimulation: the two-signal model revisited. Trends Immunol 22(4):217

    Article  CAS  PubMed  Google Scholar 

  9. Dall P, Heider KH, Hekele A, von Minckwitz G, Kaufmann M, Ponta H, Herrlich P (1994) Surface protein expression and messenger RNA splicing analysis of CD44 in uterine cervical cancer and normal cervical epithelium. Cancer Res 54(13):3337

    CAS  PubMed  Google Scholar 

  10. Dall P, Hekele A, Ikenberg H, Goppinger A, Bauknecht T, Pfleiderer A, Moll J, Hofmann M, Ponta H, Herrlich P (1996) Increasing incidence of CD44v7/8 epitope expression during uterine cervical carcinogenesis. Int J Cancer 69(2):79

    Article  CAS  PubMed  Google Scholar 

  11. Dall P, Hekele A, Beckmann MW, Bender HG, Herrlich P, Ponta H (1997) Efficient lysis of CD44v7/8-presenting target cells by genetically engineered cytotoxic T-lymphocytes: a model for immunogene therapy of cervical cancer. Gynecol Oncol 66:209

    Article  CAS  PubMed  Google Scholar 

  12. Darcy PK, Kershaw MH, Trapani JA, Smyth MJ (1998) Expression in cytotoxic T lymphocytes of a single-chain anti-carcinoembryonic antigen antibody: redirected Fas ligand-mediated lysis of colon carcinoma. Eur J Immunol 28(5):1663

    Article  CAS  PubMed  Google Scholar 

  13. Durst B (2000) Untersuchung der Expression des CD44-Glykoporteins bei gynäkologischen Tumoren und Entwicklung eines Gentherapieansatzes mit rekombinanten zytotoxischen T-Zellen (rCTL). Inaugural Dissertation. Mathematisch-Naturwissenschaftliche Fakultät der Heinrich-Heine-Universität Düsseldorf

  14. Esser MT, Dinglasan RD, Krishnamurthy B, Gullo CA, Graham MB, Braciale VL (1999) IL-2 induces Fas ligand/Fas (CD95L/CD95) cytotoxicity in CD8+ and CD4+ T lymphocyte clones. J Immunol 158(12):5612

    Google Scholar 

  15. Fischer WH, Thor Straten P, Terheyden P, Becker JC (1999) Function and dysfunction of CD4(+) T cells in the immune response to melanoma. Cancer Immunol Immunother 48(7):363

    Article  CAS  PubMed  Google Scholar 

  16. Foekens JA, Dall P, Klinjn JG, Skroch-Angel P, Claassen CJ, Look MP, Ponta H, van Putten WL, Herrlich P, Henzen-Logmans SC (1999) Prognostic value of CD44 variant expression in primary breast cancer. Int J Cancer 84(3):209

    Article  CAS  PubMed  Google Scholar 

  17. Foreman KE, Wrone-Smith T, Krueger AE, Nickoloff BJ (1999) Expression of costimulatory molecules CD80 and/or CD86 by a Kaposi’s sarcoma tumor cell line induces differential T cell activation and proliferation. Clin Immunol 91(3):345

    Article  CAS  PubMed  Google Scholar 

  18. Garcia-Lora A, Algarra I, Garrido F (2003) MHC class I antigens, immune surveillance, and tumor immune escape. J Cell Physiol 195(3):346

    Article  CAS  PubMed  Google Scholar 

  19. Gueckel B, Meuer S, Bastert G, Wallwiener D (2003) Tumor-associated antigens as tools in immunodiagnostics and immumotherapy of breast cancer. J Obstet Gynaecol 63:130

    Google Scholar 

  20. Hekele A, Dall P, Moritz D, Wels W, Groner B, Herrlich P, Ponta H (1996) Growth retardation of tumors by adoptive transfer of cytotoxic T lymphocytes reprogrammed by CD44v6-specific scFv-kappa-chimera. Int J Cancer 68:232

    Article  CAS  PubMed  Google Scholar 

  21. Hombach A, Schneider C, Sent D, Koch D, Willemsen RA, Diehl V, Kruis W, Bolhuis RL, Pohl C, Abken H (2000) An entirely humanized CD3 zeta-chain signaling receptor that directs peripheral blood t cells to specific lysis of carcinoembryonic antigen-positive tumor cells. Int J Cancer 88(1):115

    Article  CAS  PubMed  Google Scholar 

  22. Imam H, Eriksson B, Oberg K (2000) Expression of CD44 variant isoforms and association to the benign form of endocrine pancreatic tumours. Ann Oncol 11(3):295

    Article  CAS  PubMed  Google Scholar 

  23. Iwasake T, Hara K, Hayashi Y, Yokoyama M, Hachisuga T, Fukuda K, Okuma Y, Sugimori H (1991) Antitumor effects of human recombinant interferon-gamma and tumor necrosis necrosis factor on five cervical adenocarcinoma cell lines, in vivo and in vitro. Gynecol Oncol 42(1):39

    Article  PubMed  Google Scholar 

  24. Keil O, Bojahr H, Prisack HB, Dall P (2001) Novel lipophilic chloroquine analogues for a highly efficient gene transfer into gynecological tumours. Bioorg Med Chem Lett 11:21611

    Article  Google Scholar 

  25. Kim KB, Choi YH, Kim IK, Chung CW, Kim BJ, Park YM, Jung YK (2002) Potentiation of Fas- and Trail-mediated apoptosis by IFN-gamma in A549 lung epithelial cells: enhancement of caspase-8 expression through IFN-response element. Cytokines 20(6):283

    Article  CAS  Google Scholar 

  26. Miyazono K, Suzuki H, Imamura T (2003) Regulation of TGF-beta signaling and its roles in progression of tumors. Cancer Sci 94(3):230

    CAS  PubMed  Google Scholar 

  27. Morgenstern JP, Land H (1990) Advanced mammalian gene transfer: retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. Nucleic Acids Res 18:3587

    CAS  PubMed  Google Scholar 

  28. Nestle FO (2000) Dendritic cell vaccination for cancer therapy. Oncogene 19:6673

    Article  CAS  PubMed  Google Scholar 

  29. Nilges K, Hohn H, Pilch H, Neukirch C, Freitag K, Talbot PJ, Maeurer MJ (2003) Human papillomavirus type 16 E7 peptide-directed CD8+ T cells from patients with cervical cancer are cross-reactive with the coronavirus NS2 protein. J Virol 77(9):5464

    Article  CAS  PubMed  Google Scholar 

  30. Nozoe T, Yasuda M, Honda M, Inutsuka S, Korenaga D (2003) Fas ligand expression is correlated with metastasis in colorectal carcinoma. Oncology 65(1):83

    Article  CAS  PubMed  Google Scholar 

  31. Pilch H, Hoehn H, Schmidt M, Steiner E, Tanner B, Seufert R, Maeurer M (2002) CD8+CD45RA+CD27-CD28-T-cell subset in PBL of cervical cancer patients representing CD8+ T cells being able to recognize cervical cancer associated antigens provided by HPV 16 E7. Zentralbl Gynakol 124(8–9):406

    Google Scholar 

  32. Pinthus JH, Waks T, Kaufman-Francis K, Schindler DG, Harmelin A, Kanety H, Ramon J, Eshar Z (2003) Immuno gene therapy of established prostate tumours using chimeric receptor redirected human lymphocytes. Cancer Res 63:2470

    CAS  PubMed  Google Scholar 

  33. Pollok KE, Hanenberg H, Noblitt TW, Schroeder WL, Kato I, Emanuel D, Williams DA (1998) High-efficiency gene transfer into normal and adenosine deaminase-deficient T lymphocytes is mediated by transduction on recombinant fibronectin fragments. J Virol 72(6):4882

    CAS  PubMed  Google Scholar 

  34. Restifo NP, Kawakami Y, Marincola F, Shamamian P, Taggarse A, Esqquviel F, Rosenberg SA (1993) Moelcular mechanisms used by tumors to escape immune recognition: immunogenetic therapy and the cell biology of major histocompatibilty complex class I. J Immunother 14:182

    CAS  PubMed  Google Scholar 

  35. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkhurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321

    CAS  PubMed  Google Scholar 

  36. Saller RM, Indraccolo S, Coppola V, Esposito G, Stange J, Mitzner S, Amadori A, Salmons B, Gunzburg WH (2002) Encapsulated cells producing retroviral vectors for in vivo gene transfer. J Gene Med 4(2):150

    Article  PubMed  Google Scholar 

  37. Yang AS, Lattime EC (2003) Tumor-induced interleukin 10 suppresses the ability of splenic dendritic cells to stimulate CD4 and CD8 T-cell responses. Cancer Res 63(9):2150

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dall, P., Herrmann, I., Durst, B. et al. In vivo cervical cancer growth inhibition by genetically engineered cytotoxic T cells. Cancer Immunol Immunother 54, 51–60 (2005). https://doi.org/10.1007/s00262-004-0569-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0569-x

Keywords

Navigation