Skip to main content
Log in

CpG-Oligodeoxynucleotides activate tyrosinase-related protein 2–specific T lymphocytes but do not lead to a protective tumor-specific memory response

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Purpose: Peritumoral CpG-oligodeoxynucleotide (ODN) treatment has been successful in tumor mouse models expressing strong antigens to induce activation of tumor-specific CD8+ T lymphocytes which contribute to the control of tumor growth. To get near to clinical reality, the tumor-specific CD8+ response was investigated in mice bearing the weakly immunogenic B16 melanoma tumor and using the melanocyte differentiation tyrosinase-related protein 2 (TRP-2) as a tracking antigen. Methods: The expansion and activation of TRP-2–specific T lymphocytes by CpG-ODNs was analyzed by tetramer staining and IFN-γ production assays, while the activity of these cells in both memory and primary response was evaluated in vivo. Results: After CpG-ODN treatment, the number of TRP-2 tetramer-stained CD8+ T lymphocytes was not significantly modified, but these cells produced higher levels of interferon γ (IFN-γ) in response to the antigen than those from untreated mice. Mice possessing these activated T lymphocytes, when evaluated for their antitumor memory response, showed marginal protection against intravenous (i.v.) and subcutaneous (s.c.) tumor rechallenge. These cells were not crucial for the control of primary tumor growth since strong reduction of subcutaneous tumor was observed after CpG-ODN treatment in both CD8+ T cell depleted or nondepleted mice. On the contrary, NK cell depletion markedly reduced CpG-ODN-induced tumor growth inhibition. Conclusions: Altogether, these data indicate the CpG treatment activates tumor-reactive effector CD8+ T lymphocytes, but, paralleling recent clinical observations, our model indicates that the mere activation of antitumor T cells is insufficient to result in a clinical response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A–D
Fig. 2
Fig. 3A,B
Fig. 4A,B
Fig. 5

Similar content being viewed by others

Abbreviations

CpG:

unmethylated CpG dinucleotides

ODNs:

oligodeoxynucleotides

TLR9:

toll-like receptor 9

TRP-2:

tyrosinase-related protein 2

References

  1. Anichini A, Molla A, Mortarini R, Tragni G, Bersani I, Di Nicola M, Gianni AM, Pilotti S, Dunbar R, Cerundolo V, Parmiani G (1999) An expanded peripheral T cell population to a cytotoxic T lymphocyte (CTL)-defined, melanocyte-specific antigen in metastatic melanoma patients impacts on generation of peptide-specific CTLs but does not overcome tumor escape from immune surveillance in metastatic lesions. J Exp Med 190:651

    CAS  PubMed  Google Scholar 

  2. Auf G, Carpentier AF, Chen L, Le Clanche C, Delattre JY (2001) Implication of macrophages in tumor rejection induced by CpG-oligodeoxynucleotides without antigen. Clin Cancer Res 7:3540

    CAS  PubMed  Google Scholar 

  3. Ballas ZK, Krieg AM, Warren T, Rasmussen W, Davis HL, Waldschmidt M, Weiner GJ (2001) Divergent therapeutic and immunologic effects of oligodeoxynucleotides with distinct CpG motifs. J Immunol 167:4878

    CAS  PubMed  Google Scholar 

  4. Bloom MB, Perry-Lalley D, Robbins PF, Li Y, El-Gamil M, Rosenberg SA, Yang JC (1997) Identification of tyrosinase-related protein 2 as a tumor rejection antigen for the B16 melanoma. J Exp Med 185:453

    CAS  PubMed  Google Scholar 

  5. Bronte V, Cingarlini S, Apolloni E, Serafini P, Marigo I, De Santo C, Macino B, Marin O, Zanovello P (2003) Effective genetic vaccination with a widely shared endogenous retroviral tumor antigen requires CD40 stimulation during tumor rejection phase. J Immunol 171:6396

    CAS  PubMed  Google Scholar 

  6. Carpentier AF, Chen L, Maltonti F, Delattre JY (1999) Oligodeoxynucleotides containing CpG motifs can induce rejection of a neuroblastoma in mice. Cancer Res 59:5429

    CAS  PubMed  Google Scholar 

  7. Garboczi DN, Hung DT, Wiley DC (1992) HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc Natl Acad Sci U S A 89:3429

    CAS  PubMed  Google Scholar 

  8. Heckelsmiller K, Rall K, Beck S, Schlamp A, Seiderer J, Jahrsdorfer B, Krug A, Rothenfusser S, Endres S, Hartmann G (2002) Peritumoral CpG DNA elicits a coordinated response of CD8 T cells and innate effectors to cure established tumors in a murine colon carcinoma model. J Immunol 169:3892

    CAS  PubMed  Google Scholar 

  9. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408:740

    CAS  PubMed  Google Scholar 

  10. Hornung V, Rothenfusser S, Britsch S, Krug A, Jahrsdorfer B, Giese T, Endres S, Hartmann G (2002) Quantitative expression of toll-like receptor 1–10 mRNA in cellular subsets of human peripheral blood mononuclear cells and sensitivity to CpG oligodeoxynucleotides. J Immunol 168:4531

    CAS  PubMed  Google Scholar 

  11. Jackson IJ, Chambers DM, Tsukamoto K, Copeland NG, Gilbert DJ, Jenkins NA, Hearing V (1992) A second tyrosinase-related protein, TRP-2, maps to and is mutated at the mouse slaty locus. EMBO J 11:527

    CAS  PubMed  Google Scholar 

  12. Kawarada Y, Ganss R, Garbi N, Sacher T, Arnold B, Hammerling GJ (2001) NK- and CD8(+) T cell-mediated eradication of established tumors by peritumoral injection of CPG-containing oligodeoxynucleotides. J Immunol 167:5247

    PubMed  Google Scholar 

  13. Kranzer K, Bauer M, Lipford GB, Heeg K, Wagner H, Lang R (2000) CpG-oligodeoxynucleotides enhance T-cell receptor-triggered interferon-gamma production and up-regulation of CD69 via induction of antigen-presenting cell-derived interferon type I and interleukin-12. Immunology 99:170

    Article  CAS  PubMed  Google Scholar 

  14. Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709

    Article  CAS  PubMed  Google Scholar 

  15. Krieg AM, Yi AK, Matson S, Waldschmidt TJ, Bishop GA, Teasdale R, Koretzky GA, Klinman DM (1995) CpG motifs in bacterial DNA trigger direct B-cell activation. Nature 374:546

    CAS  PubMed  Google Scholar 

  16. Lee KH, Wang E, Nielsen MB, Wunderlich J, Migueles S, Connors M, Steinberg SM, Rosenberg SA, Marincola FM (1999) Increased vaccine-specific T cell frequency after peptide-based vaccination correlates with increased susceptibility to in vitro stimulation but does not lead to tumor regression. J Immunol 163:6292

    CAS  PubMed  Google Scholar 

  17. Lipford GB, Sparwasser T, Bauer M, Zimmermann S, Koch ES, Heeg K, Wagner H (1997) Immunostimulatory DNA: sequence-dependent production of potentially harmful or useful cytokines. Eur J Immunol 27:3420

    CAS  PubMed  Google Scholar 

  18. Lipford GB, Bendigs S, Heeg K, Wagner H (2000) Poly-guanosine motifs costimulate antigen-reactive CD8 T cells while bacterial CpG-DNA affect T-cell activation via antigen-presenting cell-derived cytokines. Immunology 101:46

    Article  CAS  PubMed  Google Scholar 

  19. Loftus DJ, Castelli C, Clay TM, Squarcina P, Marincola FM, Nishimura MI, Parmiani G, Appella E, Rivoltini L (1996) Identification of epitope mimics recognized by CTL reactive to the melanoma/melanocyte-derived peptide MART-1(27–35). J Exp Med 184:647

    CAS  PubMed  Google Scholar 

  20. Lollini P, De Giovanni D, Nicoletti G, Bontadini A, Tazzari P, Landuzzi L, Scotlandi K, Nanni P (1990) Enhancement of experimental metastatic ability by tumor necrosis factor-alpha alone or in combination with interferon-gamma. Clin Exp Met 8:215

    CAS  Google Scholar 

  21. Mandruzzato S, Rossi E, Bernardi F, Tosello V, Macino B, Basso G, Chiarion-Sileni V, Rossi CR, Montesco C, Zanovello P (2002) Large and dissimilar repertoire of melan-A/MART-1-specific CTL in metastatic lesions and blood of a melanoma patient. J Immunol 169:4017

    CAS  PubMed  Google Scholar 

  22. Martin-Orozco E, Kobayashi H, Van Uden J, Nguyen MD, Kornbluth RS, Raz E (1999) Enhancement of antigen-presenting cell surface molecules involved in cognate interactions by immunostimulatory DNA sequences. Int Immunol 11:1111

    Article  CAS  PubMed  Google Scholar 

  23. Rodolfo M, Castelli C, Bassi C, Accornero P, Sensi M, Parmiani G (1994) Cytotoxic T lymphocytes recognize tumor antigens of a murine colonic carcinoma by using different T-cell receptors. Int J Cancer 57:440

    CAS  PubMed  Google Scholar 

  24. Rosenberg SA, Yang JC, Schwartzentruber DJ, Hwu P, Marincola FM, Topalian SL, Restifo NP, Dudley ME, Schwarz SL, Spiess PJ, Wunderlich JR, Parkurst MR, Kawakami Y, Seipp CA, Einhorn JH, White DE (1998) Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med 4:321

    CAS  PubMed  Google Scholar 

  25. Sato N, Michaelides MC, Wallack MK (1983) Transplantation immunity and cross-protection of two cultured murine colon lines. J Natl Cancer Inst 70:261

    CAS  PubMed  Google Scholar 

  26. Sfondrini L, Besusso D, Rumio C, Rodolfo M, Ménard S, Balsari A (2002) Prevention of spontaneous mammary adenocarcinoma in HER-2/neu transgenic mice by foreign DNA. FASEB J 16:1749

    Article  CAS  PubMed  Google Scholar 

  27. Sfondrini L, Besusso D, Zoia MT, Rodolfo M, Invernizzi AM, Taniguchi M, Nakayama T, Colombo MP, Ménard S, Balsari A (2002) Absence of CD1 molecule up-regulates antitumor activity induced by CpG oligodeoxynucleotides in mice. J Immunol 169:151

    CAS  PubMed  Google Scholar 

  28. Sparwasser T, Koch ES, Vabulas RM, Heeg K, Lipford GB, Ellwart JW, Wagner H (1998) Bacterial DNA and immunostimulatory CpG oligonucleotides trigger maturation and activation of murine dendritic cells. Eur J Immunol 28:2045

    Google Scholar 

  29. Steitz J, Bruck J, Steinbrink K, Enk A, Knop J, Tuting T (2000) Genetic immunization of mice with human tyrosinase-related protein 2: implications for the immunotherapy of melanoma. Int J Cancer 86:89

    CAS  PubMed  Google Scholar 

  30. Sun S, Beard C, Jaenisch R, Jones P, Sprent J (1997) Mitogenicity of DNA from different organisms for murine B cells. J Immunol 159:3119

    CAS  PubMed  Google Scholar 

  31. Sun Y, Song M, Stevanovic S, Jankowiak C, Paschen A, Rammensee HG, Schadendorf D (2000) Identification of a new HLA-A(*)0201-restricted T-cell epitope from the tyrosinase-related protein 2 (TRP2) melanoma antigen. Int J Cancer 87:399

    Article  CAS  PubMed  Google Scholar 

  32. Thurner B, Haendle I, Roder C, Dieckmann D, Keikavoussi P, Jonuleit H, Bender A, Maczek C, Schreiner D, von den DP, Brocker EB, Steinman RM, Enk A, Kampgen E, Schuler G (1999) Vaccination with mage-3A1 peptide-pulsed mature, monocyte-derived dendritic cells expands specific cytotoxic T cells and induces regression of some metastases in advanced stage IV melanoma. J Exp Med 190:1669

    CAS  PubMed  Google Scholar 

  33. Wagner H (1999) Bacterial CpG DNA activates immune cells to signal infectious danger. Adv Immunol 73:329

    CAS  PubMed  Google Scholar 

  34. Wang RF, Appella E, Kawakami Y, Kang X, Rosenberg SA (1996) Identification of TRP-2 as a human tumor antigen recognized by cytotoxic T lymphocytes. J Exp Med 184:2207

    CAS  PubMed  Google Scholar 

  35. Wang RF, Johnston SL, Southwood S, Sette A, Rosenberg SA (1998) Recognition of an antigenic peptide derived from tyrosinase-related protein-2 by CTL in the context of HLA-A31 and -A33. J Immunol 160:890

    CAS  PubMed  Google Scholar 

  36. Yamamoto S, Yamamoto T, Kataoka T, Kuramoto E, Yano O, Tokunaga T (1992) Unique palindromic sequences in synthetic oligonucleotides are required to induce IFN and augment IFN-mediated natural killer activity. J Immunol 148:4072

    CAS  PubMed  Google Scholar 

  37. Zeh HJ III, Perry-Lalley D, Dudley ME, Rosenberg SA, Yang JC (1999) High avidity CTLs for two self-antigens demonstrate superior in vitro and in vivo antitumor efficacy. J Immunol 162:989

    CAS  PubMed  Google Scholar 

  38. Zimmermann S, Egeter O, Hausmann S, Lipford GB, Rocken M, Wagner H, Heeg K (1998) CpG oligodeoxynucleotides trigger protective and curative Th1 responses in lethal murine leishmaniasis. J Immunol 160:3627

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by AIRC and FIRST. L.S. was supported by a fellowship from FIRC. We thank Dr Thomas Tuting for kindly providing the hTRP-2–encoding recombinant adenovirus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Balsari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sfondrini, L., Besusso, D., Bronte, V. et al. CpG-Oligodeoxynucleotides activate tyrosinase-related protein 2–specific T lymphocytes but do not lead to a protective tumor-specific memory response. Cancer Immunol Immunother 53, 697–704 (2004). https://doi.org/10.1007/s00262-004-0516-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-004-0516-x

Keywords

Navigation