Skip to main content

Advertisement

Log in

Exosome-based immunotherapy

  • Review
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Exosomes are small membrane vesicles originating from late endosomes and secreted by hematopoietic and epithelial cells in culture. Exosome proteic and lipid composition is unique and might shed some light into exosome biogenesis and function. Exosomes secreted from professional antigen-presenting cells (i.e., B lymphocytes and dendritic cells) are enriched in MHC class I and II complexes, costimulatory molecules, and hsp70–90 chaperones, and have therefore been more extensively studied for their immunomodulatory capacities in vitro and in vivo. This review will present the main biological features pertaining to tumor or DC-derived exosomes, will emphasize their immunostimulatory function, and will discuss their implementation in cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B

Similar content being viewed by others

Abbreviations

APC:

antigen-presenting cell

ASI:

active specific immunotherapy

CTL:

cytotoxic T lymphocyte

DC:

dendritic cell

FDC:

follicular dendritic cell

MD-DC:

monocyte-derived dendritic cell

GMP:

good manufacturing procedure

HLA:

human leukocyte antigen

HSP:

heat shock protein

MHC:

major histocompatibility complex

MVB:

multivesicular body

ExAs:

ascitis-derived exosomes

DEX:

DC-derived exosome

TEX:

tumor cell–derived exosome

References

  1. Denzer K, Kleijmeer MJ, Heijnen HF, Stoorvogel W, Geuze HJ (2000) Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci 113:3365–3374

    PubMed  Google Scholar 

  2. Denzer K, van Eijk M, Kleijmeer MJ, Jakobson E, de Groot C, Geuze HJ (2000) Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J Immunol 165:1259–1265

    CAS  PubMed  Google Scholar 

  3. Quah B, O’Neill HC (2000) The application of dendritic cell-derived exosomes in tumour immunotherpy. Cancer Biother Radiopharm 15:185–194

    CAS  PubMed  Google Scholar 

  4. André F, Schartz NE, Movassagh M, Flament C, Pautier P, Morice P, Pomel C, Lhomme C, Escudier B, Le Chevalier T, Tursz T, Amigorena S, Raposo G, Angevin E, Zitvogel L (2002) Malignant effusions and immunogenic tumor derived-exosomes. Lancet 360:295–305

    Article  PubMed  Google Scholar 

  5. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C, Tenza D, Ricciardi-Castagnoli P, Raposo G, Amigorena S (1998) Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat Med 4:594–600

    CAS  PubMed  Google Scholar 

  6. Wolfers J, Lozier A, Raposo G, Regnault A, Thery C, Masurier C, Flament C, Pouzieux S, Faure F, Tursz T, Angevin E, Amigorena S, Zitvogel L (2001) Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat Med 7:297–303

    CAS  PubMed  Google Scholar 

  7. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C (1987) Vesicle formation during reticulocyte maturation: association of plasma membrane activities with released vesicles (exosomes). J Biol Chem 262:9412–9420

    CAS  PubMed  Google Scholar 

  8. Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C (1997) Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol Biol Cell 8:2631–2645

    CAS  PubMed  Google Scholar 

  9. Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ (1998) Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J Biol Chem 273:20121–20127

    Article  CAS  PubMed  Google Scholar 

  10. Arnold PY, Mannie MD (1999) Vesicles bearing MHC class II molecules mediate transfer of antigen-presenting cells to CD4+ cells. Eur J Immunol 29:1363–1373

    Article  CAS  PubMed  Google Scholar 

  11. Heijnen IA, van Vugt MJ, Fanger NA, Graziano RF, de Wit TP, Hofhuis FM, Guyre PM, Capel PJ, Verbeek JS, van de Winkel JG (1996) Antigen targeting to myeloid-specific human Fc gamma RI/CD64 triggers enhanced antibody responses in transgenic mice. J Clin Investig 97:331–338

    CAS  Google Scholar 

  12. Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA (1999) Ectosomes released by human neutrophils are specialized functional units. J Immunol 163:4564–4573

    CAS  PubMed  Google Scholar 

  13. Patel DM, Arnold PY, White GA, Nardella JP, Mannie MD (1999) Class II MHC/peptide complexes are released from APC and are acquired by T cell responders during specific antigen recognition. J Immunol 163:5201–5210

    CAS  PubMed  Google Scholar 

  14. Geminard C, Nault F, Johnstone RM, Vidal M (2001) Characteristics of the Interaction between Hsc70 and the transferrin receptor in exosomes released during reticulocyte maturation. J Biol Chem 276:9910–9916

    Article  CAS  PubMed  Google Scholar 

  15. Skokos D, Le Panse S, Villa I, Rousselle JC, Peronet R, David B, Namane A, Mecheri S (2001) Mast cell-dependent B and T lymphocyte activation is mediated by the secretion of immunologically active exosomes. J Immunol 166:868–876

    CAS  PubMed  Google Scholar 

  16. Thery C, Zitvogel L, Amigorena S (2002) Exosomes: composition, biogenesis and function. Nat Rev Immunol 2:569–579

    CAS  PubMed  Google Scholar 

  17. Yang S, Kittlesen D, Slingluff CL Jr, Vervaert CE, Seigler HF, Darrow TL (2000) Dendritic cells infected with a vaccinia vector carrying the human gp100 gene simultaneously present multiple specificities and elicit high-affinity T cells reactive to multiple epitopes and restricted by HLA-A2 and -A3. J Immunol 164(8):4204–4211

    CAS  PubMed  Google Scholar 

  18. Dhodapkar MV, Steinman RM, Krasovsky J, Munz C, Bhardwaj N (2001) Antigen-specific inhibition of effector T cell function in humans after injection of immature dendritic cells. J Exp Med 193:233–238

    CAS  PubMed  Google Scholar 

  19. Chaput N, André F, Schartz NEC, Escudier B, Turz T, Angevin E, Zitvogel L (2003) Proc Am Assoc Cancer Res 44:A4746

    Google Scholar 

  20. Théry C, Duban L, Segura E, Véron P, Lantz O, Amigorena S (2002) Exosomes activate naive CD4+ T cells by transfer of MHC/peptide complexes to dendritic cells. Nat Immunol 3:1156–1162

    Article  PubMed  Google Scholar 

  21. Lamparski H, Metha-Damani A, Yao J, Patel S, Hsu D, Ruegg C, Le Pecq J (2002) Production and characterization of clinical grade exosomes derived from dendritic cells. J Immunol Meth 270(2):211

    CAS  Google Scholar 

  22. H. Pêche (2001) Club Francophone Des Cellules Dendritiques, p 31 (Abstract C08)

  23. E. Angevin (2002) 7th International Symposium on Dendritic Cells, p 28 (Abstract 20)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurence Zitvogel.

Additional information

This work was presented at the first Cancer Immunology and Immunotherapy Summer School, 8–13 September 2003, Ionian Village, Bartholomeio, Peloponnese, Greece.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaput, N., Taïeb, J., Schartz, N.E.C. et al. Exosome-based immunotherapy. Cancer Immunol Immunother 53, 234–239 (2004). https://doi.org/10.1007/s00262-003-0472-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-003-0472-x

Keywords

Navigation