Skip to main content
Log in

NXS2 murine neuroblastomas express increased levels of MHC class I antigens upon recurrence following NK-dependent immunotherapy

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

We evaluated recurrent NXS2 neuroblastoma tumors that developed following NK- or T-cell–mediated immunotherapy in tumor-bearing mice. Recurrent tumors developed following an NK-dependent antitumor response using a suboptimal dose of hu14.18-IL2, a humanized IL-2 immunocytokine targeted to the GD2-ganglioside. This treatment initially induced complete resolution of measurable tumor in the majority of mice, followed, however, by delayed tumor recurrence in some mice. These recurrent NXS2 tumors revealed markedly enhanced (> fivefold) MHC class I antigen expression when compared with NXS2 tumors growing in PBS-treated control mice. A similar level of enhanced MHC class I antigen-expression could be induced on NXS2 cells in vitro by culturing with interferon γ, and was associated with reduced susceptibility to both NK-cell–mediated tumor cell lysis and antibody-dependent cellular cytotoxicity in vitro. In contrast, Flt3-ligand treatment of NXS2-bearing mice induced a protective T-cell–dependent antitumor memory response. Recurrent NXS2 tumors that developed following Flt3-L therapy revealed a decreased expression of MHC class I antigens. While NXS2 tumors are susceptible to in vivo destruction following either hu14.18-IL2 or Flt3-ligand immunotherapies, these results suggest that some tumor cells may be selected to survive and progress by expressing either higher or lower levels of MHC class I antigen in order to resist either NK- or T-cell–mediated antitumor responses, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3A, B
Fig. 4A–F
Fig. 5
Fig. 6.

Similar content being viewed by others

Abbreviations

ADCC:

antibody-dependent cellular cytotoxicity

Flt3-L:

Flt3-ligand

GD2 :

GD2-disialoganglioside

IC:

immunocytokine

mAb:

monoclonal antibody

NB:

neuroblastoma

NXS2:

transplantable murine neuroblastoma

s.c.:

subcutaneous

References

  1. Algarra I, Cabrera T, Garrido F (2000) The HLA crossroad in tumor immunology. Hum Immunol 61:65

    CAS  PubMed  Google Scholar 

  2. Beatty GL, Paterson Y (2000) IFN-gamma can promote tumor evasion of the immune system in vivo by down-regulating cellular levels of an endogenous tumor antigen. J Immunol 165:5502

    CAS  PubMed  Google Scholar 

  3. Becker JC, Pancook JD, Gillies SD, Furukawa K, Reisfeld RA (1996) T cell-mediated eradication of murine metastatic melanoma induced by targeted interleukin 2 therapy. J Exp Med 183:2361

    CAS  PubMed  Google Scholar 

  4. Bodmer S, Strommer K, Frei K, Siepl C, de Tribolet N, Heid I, Fontana A (1989) Immunosuppression and transforming growth factor-beta in glioblastoma. Preferential production of transforming growth factor-beta 2. J Immunol 143:3222

    CAS  Google Scholar 

  5. Chen Q, Daniel V, Maher DW, Hersey P (1994) Production of IL-10 by melanoma cells: examination of its role in immunosuppression mediated by melanoma. Int J Cancer 56:755

    CAS  PubMed  Google Scholar 

  6. Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162:156

    CAS  PubMed  Google Scholar 

  7. Cohen PA, Peng L, Plautz GE, Kim JA, Weng DE, Shu S (2000) CD4+ T cells in adoptive immunotherapy and the indirect mechanism of tumor rejection. Crit Rev Immunol 20:17

    CAS  PubMed  Google Scholar 

  8. Corr M, Tighe H, Lee D, Dudler J, Trieu M, Brinson DC, Carson DA (1997) Costimulation provided by DNA immunization enhances antitumor immunity. J Immunol 159:4999

    CAS  PubMed  Google Scholar 

  9. Corrias MV, Occhino M, Croce M, De Ambrosis A, Pistillo MP, Bocca P, Pistoia V, Ferrini S (2001) Lack of HLA-class I antigens in human neuroblastoma cells: analysis of its relationship to TAP and tapasin expression. Tissue Antigens 57:110

    Article  CAS  PubMed  Google Scholar 

  10. Cromme FV, Airey J, Heemels MT, Ploegh HL, Keating PJ, Stern PL, Meijer CJ, Walboomers JM (1994) Loss of transporter protein, encoded by the TAP-1 gene, is highly correlated with loss of HLA expression in cervical carcinomas. J Exp Med 179:335

    CAS  PubMed  Google Scholar 

  11. Davis TA, Czerwinski DK, Levy R (1999) Therapy of B-cell lymphoma with anti-CD20 antibodies can result in the loss of CD20 antigen expression. Clin Cancer Res 5:611

    CAS  PubMed  Google Scholar 

  12. Dunn OJ (1964) Multiple comparisons using rank sums. Technometrics 6:241–252

    Google Scholar 

  13. Emtage PC, Wan Y, Bramson JL, Graham FL, Gauldie J (1998) A double recombinant adenovirus expressing the costimulatory molecule B7-1 (murine) and human IL-2 induces complete tumor regression in a murine breast adenocarcinoma model. J Immunol 160:2531

    CAS  PubMed  Google Scholar 

  14. Fruh K, Gruhler A, Krishna RM, Schoenhals GJ (1999) A comparison of viral immune escape strategies targeting the MHC class I assembly pathway. Immunol Rev 168:157

    CAS  PubMed  Google Scholar 

  15. Gillies SD, Reilly EB, Lo KM, Reisfeld RA (1992) Antibody-targeted interleukin 2 stimulates T-cell killing of autologous tumor cells. Proc Natl Acad Sci U S A 89:1428

    CAS  Google Scholar 

  16. Glas R, Franksson L, Une C, Eloranta ML, Ohlen C, Orn A, Karre K (2000) Recruitment and activation of natural killer (NK) cells in vivo determined by the target cell phenotype. An adaptive component of NK cell-mediated responses. J Exp Med 191:129

    Article  CAS  PubMed  Google Scholar 

  17. Greten TF, Jaffee EM (1999) Cancer vaccines. J Clin Oncol 17:1047

    CAS  PubMed  Google Scholar 

  18. Gumperz JE, Parham P (1995) The enigma of the natural killer cell. Nature 378:245

    Article  CAS  PubMed  Google Scholar 

  19. Hank JA, Surfus JE, Gan J, Jaeger P, Gillies SD, Reisfeld RA, Sondel PM (1996) Activation of human effector cells by a tumor reactive recombinant anti-ganglioside GD2 interleukin-2 fusion protein (ch14.18-IL2). Clin Cancer Res 2:1951

    CAS  PubMed  Google Scholar 

  20. Hishii M, Nitta T, Ishida H, Ebato M, Kurosu A, Yagita H, Sato K, Okumura K (1995) Human glioma-derived interleukin-10 inhibits antitumor immune responses in vitro. Neurosurgery 37:1160

    CAS  Google Scholar 

  21. Imboden M, Murphy KR, Rakhmilevich AL, Neal ZC, Xiang R, Reisfeld RA, Gillies SD, Sondel PM (2001) The level of MHC class I expression on murine adenocarcinoma can change the antitumor effector mechanism of immunocytokine therapy. Cancer Res 61:1500

    CAS  PubMed  Google Scholar 

  22. Jager MJ, Hurks HM, Levitskaya J, Kiessling R (2002) HLA expression in uveal melanoma: there is no rule without some exception. Hum Immunol 63:444

    Article  CAS  Google Scholar 

  23. Jonges LE, van Vlierberghe RL, Ensink NG, Hagenaars M, Joly E, Eggermont AM, van de Velde CJ, Fleuren GJ, Kuppen PJ (2000) NK cells modulate MHC class I expression on tumor cells and their susceptibility to lysis. Immunobiology 202:326

    CAS  PubMed  Google Scholar 

  24. Karlhofer FM, Ribaudo RK, Yokoyama WM (1992) MHC class I alloantigen specificity of Ly-49+ IL-2-activated natural killer cells. Nature 358:66

    Google Scholar 

  25. Kendra K, Gan J, Ricci M, Surfus J, Shaker A, Super M, Frost JD, Rakhmilevich A, Hank JA, Gillies SD, Sondel PM (1999) Pharmacokinetics and stability of the ch14.18-interleukin-2 fusion protein in mice. Cancer Immunol Immunother 48:219

    Article  CAS  PubMed  Google Scholar 

  26. Koh CY, Blazar BR, George T, Welniak LA, Capitini CM, Raziuddin A, Murphy WJ, Bennett M (2001) Augmentation of antitumor effects by NK cell inhibitory receptor blockade in vitro and in vivo. Blood 97:3132

    Article  CAS  Google Scholar 

  27. Kramer K, Gerald WL, Kushner BH, Larson SM, Hameed M, Cheung NK (1998) Disialoganglioside G(D2) loss following monoclonal antibody therapy is rare in neuroblastoma. Clin Cancer Res 4:2135

    CAS  PubMed  Google Scholar 

  28. Kubota A, Lian RH, Lohwasser S, Salcedo M, Takei F (1999) IFN-gamma production and cytotoxicity of IL-2-activated murine NK cells are differentially regulated by MHC class I molecules. J Immunol 163:6488

    CAS  PubMed  Google Scholar 

  29. Ladisch S, Kitada S, Hays EF (1987) Gangliosides shed by tumor cells enhance tumor formation in mice. J Clin Invest 79:1879

    CAS  PubMed  Google Scholar 

  30. Lanza F, Latorraca A, Moretti S, Castagnari B, Ferrari L, Castoldi G (1997) Comparative analysis of different permeabilization methods for the flow cytometry measurement of cytoplasmic myeloperoxidase and lysozyme in normal and leukemic cells. Cytometry 30:134

    Article  CAS  PubMed  Google Scholar 

  31. Li JH, Rosen D, Sondel P, Berke G (2002) Immune privilege and FasL: two ways to inactivate effector cytotoxic T lymphocytes by FasL-expressing cells. Immunology 105:267

    Article  CAS  Google Scholar 

  32. Ljunggren HG, Karre K (1990) In search of the 'missing self': MHC molecules and NK cell recognition. Immunol Today 11:237

    CAS  PubMed  Google Scholar 

  33. Lode HN, Xiang R, Varki NM, Dolman CS, Gillies SD, Reisfeld RA (1997) Targeted interleukin-2 therapy for spontaneous neuroblastoma metastases to bone marrow. J Natl Cancer Inst 89:1586

    Article  CAS  PubMed  Google Scholar 

  34. Lode HN, Dreier T, Xiang R, Varki NM, Kang AS, Reisfeld RA (1998) Gene therapy with a single chain interleukin 12 fusion protein induces T cell-dependent protective immunity in a syngeneic model of murine neuroblastoma. Proc Natl Acad Sci U S A 95:2475

    Article  CAS  PubMed  Google Scholar 

  35. Lode HN, Xiang R, Dreier T, Varki NM, Gillies SD, Reisfeld RA (1998) Natural killer cell-mediated eradication of neuroblastoma metastases to bone marrow by targeted interleukin-2 therapy. Blood 91:1706

    CAS  PubMed  Google Scholar 

  36. Lode HN, Xiang R, Gillies SD, Reisfeld RA (2000) Amplification of T cell-mediated immune responses by antibody-cytokine fusion proteins. Immunol Invest 29:117

    CAS  Google Scholar 

  37. Lyman SD, Jacobsen SE (1998) c-kit ligand and Flt3 ligand: stem/progenitor cell factors with overlapping yet distinct activities. Blood 91:1101

    CAS  PubMed  Google Scholar 

  38. Lynch DH, Andreasen A, Maraskovsky E, Whitmore J, Miller RE, Schuh JC (1997) Flt3 ligand induces tumor regression and antitumor immune responses in vivo. Nat Med 3:625

    CAS  PubMed  Google Scholar 

  39. Maraskovsky E, Brasel K, Teepe M, Roux ER, Lyman SD, Shortman K, McKenna HJ (1996) Dramatic increase in the numbers of functionally mature dendritic cells in Flt3 ligand-treated mice: multiple dendritic cell subpopulations identified. J Exp Med 184:1953

    PubMed  Google Scholar 

  40. Marincola FM, Hijazi YM, Fetsch P, Salgaller ML, Rivoltini L, Cormier J, Simonis TB, Duray PH, Herlyn M, Kawakami Y, Rosenberg SA (1996) Analysis of expression of the melanoma-associated antigens MART-1 and gp100 in metastatic melanoma cell lines and in in situ lesions. J Immunother Emphasis Tumor Immunol 19:192

    CAS  PubMed  Google Scholar 

  41. McKallip R, Li R, Ladisch S (1999) Tumor gangliosides inhibit the tumor-specific immune response. J Immunol 163:3718

    CAS  PubMed  Google Scholar 

  42. McKenna HJ (1999) Generating a T cell tumor-specific immune response in vivo: can flt3-ligand-generated dendritic cells tip the balance? Cancer Immunol Immunother 48:281

    Article  CAS  PubMed  Google Scholar 

  43. Metelitsa LS, Gillies SD, Super M, Shimada H, Reynolds CP, Seeger RC (2002) Neutrophil antibody dependent cellular cytotoxicity requires Mac-1 (CD11b/CD18) and is increased when Mac-1 is activated by an anti-GD2/GM-CSF fusion protein. Blood 99:4166

    Article  CAS  PubMed  Google Scholar 

  44. Nakamura MC, Hayashi S, Niemi EC, Ryan JC, Seaman WE (2000) Activating Ly-49D and inhibitory Ly-49A natural killer cell receptors demonstrate distinct requirements for interaction with H2-D(d). J Exp Med 192:447

    Article  CAS  PubMed  Google Scholar 

  45. Ortaldo JR, Bere EW, Hodge D, Young HA (2001) Activating ly-49 NK receptors: central role in cytokine and chemokine production. J Immunol 166:4994

    CAS  Google Scholar 

  46. Pawelec G (1999) Tumour escape from the immune response: the last hurdle for successful immunotherapy of cancer? Cancer Immunol Immunother 48:343

    PubMed  Google Scholar 

  47. Pawelec G, Heinzel S, Kiessling R, Muller L, Ouyang Q, Zeuthen J (2000) Escape mechanisms in tumor immunity: a year 2000 update. Crit Rev Oncog 11:97

    CAS  Google Scholar 

  48. Penichet ML, Morrison SL (2001) Antibody-cytokine fusion proteins for the therapy of cancer. J Immunol Methods 248:91

    Article  CAS  PubMed  Google Scholar 

  49. Rees RC, Mian S (1999) Selective MHC expression in tumours modulates adaptive and innate antitumour responses. Cancer Immunol Immunother 48:374

    CAS  PubMed  Google Scholar 

  50. Reisfeld RA (1992) Potential of genetically engineered monoclonal antibodies for cancer immunotherapy. Pigment Cell Research Suppl 2:109

    CAS  Google Scholar 

  51. Ritter G, Livingston PO (1991) Ganglioside antigens expressed by human cancer cells. Semin Cancer Biol 2:401

    CAS  Google Scholar 

  52. Rosenberg SA (2001) Progress in human tumour immunology and immunotherapy. Nature 411:380

    CAS  PubMed  Google Scholar 

  53. Shurin GV, Shurin MR, Bykovskaia S, Shogan J, Lotze MT, Barksdale EMJ (2001) Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res 61:363

    CAS  PubMed  Google Scholar 

  54. Smyth MJ, Godfrey DI, Trapani JA (2001) A fresh look at tumor immunosurveillance and immunotherapy. Nat Immunol 2:293

    CAS  PubMed  Google Scholar 

  55. Strand S, Hofmann WJ, Hug H, Muller M, Otto G, Strand D, Mariani SM, Stremmel W, Krammer PH, Galle PR (1996) Lymphocyte apoptosis induced by CD95 (APO-1/Fas) ligand-expressing tumor cells—a mechanism of immune evasion? Nat Med 2:1361

    CAS  PubMed  Google Scholar 

  56. Tada T, Ohzeki S, Utsumi K, Takiuchi H, Muramatsu M, Li XF, Shimizu J, Fujiwara H, Hamaoka T (1991) Transforming growth factor-beta-induced inhibition of T cell function: susceptibility difference in T cells of various phenotypes and functions and its relevance to immunosuppression in the tumor-bearing state. J Immunol 146:1077

    CAS  PubMed  Google Scholar 

  57. Turner JG, Rakhmilevich AL, Burdelya L, Neal Z, Imboden M, Sondel PM, Yu H (2001) Anti-CD40 antibody induces antitumor and antimetastatic effects: the role of NK cells. J Immunol 166:89

    CAS  PubMed  Google Scholar 

  58. Uhr JW, Scheuermann RH, Street NE, Vitetta ES (1997) Cancer dormancy: opportunities for new therapeutic approaches. Nat Med 3:505

    CAS  PubMed  Google Scholar 

  59. Vasmel WL, Sijts EJ, Leupers CJ, Matthews EA, Melief CJ (1989) Primary virus-induced lymphomas evade T cell immunity by failure to express viral antigens. J Exp Med 169:1233

    CAS  PubMed  Google Scholar 

  60. Velders MP, Nieland JD, Rudolf MP, Loviscek K, Weijzen S, de Visser KE, Macedo MF, Carbone M, Kast WM (1998) Identification of peptides for immunotherapy of cancer: it is worth the effort. Crit Rev Immunol 18:7

    CAS  PubMed  Google Scholar 

  61. Xiang R, Lode HN, Dolman CS, Dreier T, Varki NM, Qian X, Lo KM, Lan Y, Super M, Gillies SD, Reisfeld RA (1997) Elimination of established murine colon carcinoma metastases by antibody-interleukin 2 fusion protein therapy. Cancer Res 57:4948

    CAS  PubMed  Google Scholar 

  62. Yokoyama WM (1993) Recognition structures on natural killer cells. Curr Opin Immunol 5:67

    CAS  Google Scholar 

  63. Yu Z, Restifo NP (2002) Cancer vaccines: progress reveals new complexities. J Clin Invest 110:289

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs Nancy Scherer, Stewart Lyman, and Michael Widmer of Immunex (Seattle, WA) for provision of Flt3-L and sharing of data; Kathy Schell for assistance with flow cytometric analyses; and Drs Jacek Gan and Mark Albertini of UW-Madison, and Oscar Kashala of EMD (Durham, NC) for helpful discussions. This work was supported by NIH Grants CA32685 and CA14520, Army Grant DAMD BC990300, and a grant from the Midwest Athletes for Childhood Cancer Fund. This study is dedicated to the memory of Lewie Clay Neal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul M. Sondel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neal, Z.C., Imboden, M., Rakhmilevich, A.L. et al. NXS2 murine neuroblastomas express increased levels of MHC class I antigens upon recurrence following NK-dependent immunotherapy. Cancer Immunol Immunother 53, 41–52 (2004). https://doi.org/10.1007/s00262-003-0435-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-003-0435-2

Keywords

Navigation