Skip to main content
Log in

Modulation of costimulation to enhance tumor immunity

  • Symposium in Writing
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aarts WM, Schlom J, Hodge JW (2002) Vector-based vaccine/cytokine combination therapy to enhance induction of immune responses to a self-antigen and antitumor activity. Cancer Res 62:5770–5777

    CAS  PubMed  Google Scholar 

  2. Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T (1996) Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 8:765–772

    CAS  PubMed  Google Scholar 

  3. Aicher A, Hayden-Ledbetter M, Brady WA, Pezzutto A, Richter G, Magaletti D, Buckwalter S, Ledbetter JA, Clark EA (2000) Characterization of human inducible costimulator ligand expression and function. J Immunol 164:4689–4696

    CAS  PubMed  Google Scholar 

  4. Ara G, Baher A, Storm N, Horan T, Baikalov C, Brisan E, Camacho R, Moore A, Goldman H, Kohno T, Cattley RC, Van G, Gaida K, Zhang M, Whoriskey JS, Fong D, Yoshinaga SK (2003) Potent activity of soluble B7RP-1-Fc in therapy of murine tumors in syngeneic hosts. Int J Cancer 103:501–507

    Article  CAS  PubMed  Google Scholar 

  5. Azuma M, Ito D, Yagita H, Okumura K, Phillips JH, Lanier LL, Somoza C (1993) B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366:76–79

    Google Scholar 

  6. Baskar S, Ostrand-Rosenberg S, Nabavi N, Nadler LM, Freeman GJ, Glimcher LH (1993) Constitutive expression of B7 restores immunogenicity of tumor cells expressing truncated major histocompatibility complex class II molecules. Proc Natl Acad Sci USA 90:5687–5690

    CAS  PubMed  Google Scholar 

  7. Beier KC, Hutloff A, Dittrich AM, Heuck C, Rauch A, Buchner K, Ludewig B, Ochs HD, Mages HW, Kroczek RA (2000) Induction, binding specificity and function of human ICOS. Eur J Immunol 30:3707–3717

    Article  CAS  PubMed  Google Scholar 

  8. Boise LH, Minn AJ, Noel PJ, June CH, Accavitti MA, Lindsten T, Thompson CB (1995) CD28 costimulation can promote T cell survival by enhancing the expression of Bcl-XL. Immunity 3:87–98

    CAS  PubMed  Google Scholar 

  9. Briones J, Timmerman JM, Panicalli DL, Levy R (2003) Antitumor immunity after vaccination with B lymphoma cells overexpressing a triad of costimulatory molecules. J Natl Cancer Inst 95: 548–555

    Article  CAS  PubMed  Google Scholar 

  10. Brodie D, Collins AV, Iaboni A, Fennelly JA, Sparks LM, Xu XN, van der Merwe PA, Davis SJ (2000) LICOS, a primordial costimulatory ligand? Curr Biol 10:333–336

    Article  CAS  PubMed  Google Scholar 

  11. Brown JA, Dorfman DM, Ma FR, Sullivan EL, Munoz O, Wood CR, Greenfield EA, Freeman GJ (2003) Blockade of programmed death-1 ligands on dendritic cells enhances T cell activation and cytokine production. J Immunol 170:1257–1266

    CAS  PubMed  Google Scholar 

  12. Brunet JF, Denizot F, Luciani MF, Roux-Dosseto M, Suzan M, Mattei MG, Golstein P (1987) A new member of the immunoglobulin superfamily--CTLA-4. Nature 328:267–270

    Article  CAS  PubMed  Google Scholar 

  13. Carreno BM, Collins M (2002) The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol 20:29–53

    Article  CAS  PubMed  Google Scholar 

  14. Cella M, Scheidegger D, Palmer-Lehmann K, Lane P, Lanzavecchia A, Alber G (1996) Ligation of CD40 on dendritic cells triggers production of high levels of interleukin-12 and enhances T cell stimulatory capacity: T-T help via APC activation. J Exp Med 184:747–752

    CAS  PubMed  Google Scholar 

  15. Chapoval AI, Ni J, Lau JS, Wilcox RA, Flies DB, Liu D, Dong H, Sica GL, Zhu G, Tamada K, Chen L (2001) B7-H3: a costimulatory molecule for T cell activation and IFN-gamma production. Nat Immunol 2:269–274

    Article  CAS  PubMed  Google Scholar 

  16. Chen L, Ashe S, Brady WA, Hellstrom I, Hellstrom KE, Ledbetter JA, McGowan P, Linsley PS (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71:1093–1102

    CAS  PubMed  Google Scholar 

  17. Chen L, McGowan P, Ashe S, Johnston J, Li Y, Hellstrom I, Hellstrom KE (1994) Tumor immunogenicity determines the effect of B7 costimulation on T cell-mediated tumor immunity. J Exp Med 179:523–532

    CAS  PubMed  Google Scholar 

  18. Chiodoni C, Paglia P, Stoppacciaro A, Rodolfo M, Parenza M, Colombo MP (1999) Dendritic cells infiltrating tumors cotransduced with granulocyte/macrophage colony-stimulating factor (GM-CSF) and CD40 ligand genes take up and present endogenous tumor-associated antigens, and prime naive mice for a cytotoxic T lymphocyte response. J Exp Med 190:125–133

    CAS  PubMed  Google Scholar 

  19. Coughlin CM, Wysocka M, Kurzawa HL, Lee WM, Trinchieri G, Eck SL (1995) B7-1 and interleukin 12 synergistically induce effective antitumor immunity. Cancer Res 55:4980–4987

    CAS  PubMed  Google Scholar 

  20. DeBenedette MA, Shahinian A, Mak TW, Watts TH (1997) Costimulation of CD28- T lymphocytes by 4-1BB ligand. J Immunol 158:551–559

    CAS  PubMed  Google Scholar 

  21. Denfeld RW, Dietrich A, Wuttig C, Tanczos E, Weiss JM, Vanscheidt W, Schopf E, Simon JC (1995) In situ expression of B7 and CD28 receptor families in human malignant melanoma: relevance for T-cell-mediated anti-tumor immunity. Int J Cancer 62:259-265

    CAS  PubMed  Google Scholar 

  22. Diehl L, den Boer AT, Schoenberger SP, van der Voort EI, Schumacher TN, Melief CJ, Offringa R, Toes RE (1999) CD40 activation in vivo overcomes peptide-induced peripheral cytotoxic T-lymphocyte tolerance and augments anti-tumor vaccine efficacy. Nat Med 5:774–779

    CAS  PubMed  Google Scholar 

  23. Dong H, Strome SE, Salomao DR, Tamura H, Hirano F, Flies DB, Roche PC, Lu J, Zhu G, Tamada K, Lennon VA, Celis E, Chen L (2002) Tumor-associated B7-H1 promotes T-cell apoptosis: a potential mechanism of immune evasion. Nat Med 8:793–800

    CAS  PubMed  Google Scholar 

  24. Espenschied J, Lamont J, Longmate J, Pendas S, Wang Z, Diamond DJ, Ellenhorn JDI (2003) CTLA-4 Blockade Enhances the Therapeutic Effect of an Attenuated Poxvirus Vaccine Targeting p53 in an Established Murine Tumor Model. J Immunol 170:3401–3407

    CAS  PubMed  Google Scholar 

  25. Freeman GJ, Gribben JG, Boussiotis VA, Ng JW, Restivo VA, Jr., Lombard LA, Gray GS, Nadler LM (1993) Cloning of B7-2: a CTLA-4 counter-receptor that costimulates human T cell proliferation. Science 262:909–911

    CAS  PubMed  Google Scholar 

  26. Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H, Fitz LJ, Malenkovich N, Okazaki T, Byrne MC, Horton HF, Fouser L, Carter L, Ling V, Bowman MR, Carreno BM, Collins M, Wood CR, Honjo T (2000) Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med 192:1027–1034

    Article  CAS  PubMed  Google Scholar 

  27. Gramaglia I, Weinberg AD, Lemon M, Croft M (1998) Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. J Immunol 161:6510–6517

    CAS  PubMed  Google Scholar 

  28. Gramaglia I, Jember A, Pippig SD, Weinberg AD, Killeen N, Croft M (2000) The OX40 costimulatory receptor determines the development of CD4 memory by regulating primary clonal expansion. J Immunol 165:3043–3050

    CAS  PubMed  Google Scholar 

  29. Grangeon C, Cormary C, Douin-Echinard V, Favre G, Couderc B, Tilkin-Mariame AF (2002) In vivo induction of antitumor immunity and protection against tumor growth by injection of CD154-expressing tumor cells. Cancer Gene Ther 9:282–288

    Article  CAS  PubMed  Google Scholar 

  30. Greiner JW, Zeytin H, Anver MR, Schlom J (2002) Vaccine-based therapy directed against carcinoembryonic antigen demonstrates antitumor activity on spontaneous intestinal tumors in the absence of autoimmunity. Cancer Res 62:6944–6951

    CAS  PubMed  Google Scholar 

  31. Gri G, Gallo E, Di Carlo E, Musiani P, Colombo MP (2003) OX40 ligand-transduced tumor cell vaccine synergizes with GM-CSF and requires CD40-Apc signaling to boost the host T cell antitumor response. J Immunol 170:99–106

    CAS  PubMed  Google Scholar 

  32. Grosenbach DW, Barrientos JC, Schlom J, Hodge JW (2001) Synergy of vaccine strategies to amplify antigen-specific immune responses and antitumor effects. Cancer Res 61:4497–4505

    CAS  PubMed  Google Scholar 

  33. Grossmann ME, Brown MP, Brenner MK (1997) Antitumor responses induced by transgenic expression of CD40 ligand. Hum Gene Ther 8:1935–1943

    CAS  PubMed  Google Scholar 

  34. Haynes NM, Trapani JA, Teng MW, Jackson JT, Cerruti L, Jane SM, Kershaw MH, Smyth MJ, Darcy PK (2002) Rejection of syngeneic colon carcinoma by CTLs expressing single-chain antibody receptors codelivering CD28 costimulation. J Immunol 169:5780–5786

    CAS  PubMed  Google Scholar 

  35. Hodge JW, Sabzevari H, Yafal AG, Gritz L, Lorenz MG, Schlom J (1999) A triad of costimulatory molecules synergize to amplify T-cell activation. Cancer Res 59:5800–5807

    CAS  PubMed  Google Scholar 

  36. Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV, Davis T, Henry-Spires R, MacRae S, Willman A, Padera R, Jaklitsch MT, Shankar S, Chen TC, Korman A, Allison JP, Dranoff G (2003) Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci U S A 100:4712–4717

    Article  CAS  PubMed  Google Scholar 

  37. Horig H, Lee DS, Conkright W, Divito J, Hasson H, LaMare M, Rivera A, Park D, Tine J, Guito K, Tsang KW, Schlom J, Kaufman HL (2000) Phase I clinical trial of a recombinant canarypoxvirus (ALVAC) vaccine expressing human carcinoembryonic antigen and the B7.1 co-stimulatory molecule. Cancer Immunol Immunother 49:504–514

    Article  CAS  PubMed  Google Scholar 

  38. Hurtado JC, Kim YJ, Kwon BS (1997) Signals through 4-1BB are costimulatory to previously activated splenic T cells and inhibit activation-induced cell death. J Immunol 158:2600–2609

    CAS  PubMed  Google Scholar 

  39. Hurwitz AA, Townsend SE, Yu TF, Wallin JA, Allison JP (1998) Enhancement of the anti-tumor immune response using a combination of interferon-gamma and B7 expression in an experimental mammary carcinoma. Int J Cancer 77:107–113

    Article  CAS  PubMed  Google Scholar 

  40. Hurwitz AA, Yu TF, Leach DR, Allison JP (1998) CTLA-4 blockade synergizes with tumor-derived granulocyte-macrophage colony-stimulating factor for treatment of an experimental mammary carcinoma. Proc Natl Acad Sci USA 95:10067–10071

    Article  CAS  PubMed  Google Scholar 

  41. Hurwitz AA, Foster BA, Kwon ED, Truong T, Choi EM, Greenberg NM, Burg MB, Allison JP (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CTLA-4 blockade. Cancer Res 60:2444–2448

    CAS  PubMed  Google Scholar 

  42. Hutloff A, Dittrich AM, Beier KC, Eljaschewitsch B, Kraft R, Anagnostopoulos I, Kroczek RA (1999) ICOS is an inducible T-cell co-stimulator structurally and functionally related to CD28. Nature 397:263–266

    CAS  PubMed  Google Scholar 

  43. Ito D, Ogasawara K, Iwabuchi K, Inuyama Y, Onoe K (2000) Induction of CTL responses by simultaneous administration of liposomal peptide vaccine with anti-CD40 and anti-CTLA-4 mAb. J Immunol 164:1230–1235

    CAS  PubMed  Google Scholar 

  44. Jenkins MK, Taylor PS, Norton SD, Urdahl KB (1991) CD28 delivers a costimulatory signal involved in antigen-specific IL-2 production by human T cells. J Immunol 147:2461–2466

    CAS  PubMed  Google Scholar 

  45. Krummel MF, Allison JP (1995) CD28 and CTLA-4 have opposing effects on the response of T cells to stimulation. J Exp Med 182:459–465

    CAS  PubMed  Google Scholar 

  46. Krummel MF, Allison JP (1996) CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells. J Exp Med 183:2533–2540

    CAS  PubMed  Google Scholar 

  47. Kwon ED, Hurwitz AA, Foster BA, Madias C, Feldhaus AL, Greenberg NM, Burg MB, Allison JP (1997) Manipulation of T cell costimulatory and inhibitory signals for immunotherapy of prostate cancer. Proc Natl Acad Sci USA 94:8099–8103

    Article  CAS  PubMed  Google Scholar 

  48. Kwon ED, Foster BA, Hurwitz AA, Madias C, Allison JP, Greenberg NM, Burg MB (1999) Elimination of residual metastatic prostate cancer after surgery and adjunctive cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) blockade immunotherapy. Proc Natl Acad Sci USA 96:15074–15079

    Article  CAS  PubMed  Google Scholar 

  49. Lane P (2000) Role of OX40 signals in coordinating CD4 T cell selection, migration, and cytokine differentiation in T helper (Th)1 and Th2 cells. J Exp Med 191:201–206

    Article  CAS  PubMed  Google Scholar 

  50. Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, Iwai Y, Long AJ, Brown JA, Nunes R, Greenfield EA, Bourque K, Boussiotis VA, Carter LL, Carreno BM, Malenkovich N, Nishimura H, Okazaki T, Honjo T, Sharpe AH, Freeman GJ (2001) PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol 2:261–268

    Article  CAS  PubMed  Google Scholar 

  51. Li Y, McGowan P, Hellstrom I, Hellstrom KE, Chen L (1994) Costimulation of tumor-reactive CD4+ and CD8+ T lymphocytes by B7, a natural ligand for CD28, can be used to treat established mouse melanoma. J Immunol 153:421–428

    CAS  PubMed  Google Scholar 

  52. Liang L, Sha WC (2002) The right place at the right time: novel B7 family members regulate effector T cell responses. Curr Opin Immunol 14:384–390

    Article  CAS  PubMed  Google Scholar 

  53. Ling V, Wu PW, Finnerty HF, Bean KM, Spaulding V, Fouser LA, Leonard JP, Hunter SE, Zollner R, Thomas JL, Miyashiro JS, Jacobs KA, Collins M (2000) Cutting edge: identification of GL50, a novel B7-like protein that functionally binds to ICOS receptor. J Immunol 164:1653–1657

    CAS  PubMed  Google Scholar 

  54. Linsley PS, Clark EA, Ledbetter JA (1990) T-cell antigen CD28 mediates adhesion with B cells by interacting with activation antigen B7/BB-1. Proc Natl Acad Sci USA 87:5031–5035

    CAS  PubMed  Google Scholar 

  55. Linsley PS, Brady W, Urnes M, Grosmaire LS, Damle NK, Ledbetter JA (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174:561–569

    CAS  PubMed  Google Scholar 

  56. Linsley PS, Greene JL, Brady W, Bajorath J, Ledbetter JA, Peach R (1994) Human B7-1 (CD80) and B7-2 (CD86) bind with similar avidities but distinct kinetics to CD28 and CTLA-4 receptors. Immunity 1:793–801

    CAS  PubMed  Google Scholar 

  57. Liu X, Bai XF, Wen J, Gao JX, Liu J, Lu P, Wang Y, Zheng P, Liu Y (2001) B7H costimulates clonal expansion of, and cognate destruction of tumor cells by, CD8(+) T lymphocytes in vivo. J Exp Med 194:1339–1348

    Article  CAS  PubMed  Google Scholar 

  58. Liu Y, Zhang X, Zhang W, Chen Z, Chan T, Ali K, Jia Z, Xiang J (2002) Adenovirus-mediated CD40 ligand gene-engineered dendritic cells elicit enhanced CD8(+) cytotoxic T-cell activation and antitumor immunity. Cancer Gene Ther 9:202–208

    Article  CAS  PubMed  Google Scholar 

  59. Mackey MF, Gunn JR, Ting PP, Kikutani H, Dranoff G, Noelle RJ, Barth RJ, Jr. (1997) Protective immunity induced by tumor vaccines requires interaction between CD40 and its ligand, CD154. Cancer Res 57:2569–2574

    CAS  PubMed  Google Scholar 

  60. Martin PJ, Ledbetter JA, Morishita Y, June CH, Beatty PG, Hansen JA (1986) A 44 kilodalton cell surface homodimer regulates interleukin 2 production by activated human T lymphocytes. J Immunol 136:3282–3287

    CAS  PubMed  Google Scholar 

  61. Maxwell JR, Weinberg A, Prell RA, Vella AT (2000) Danger and OX40 receptor signaling synergize to enhance memory T cell survival by inhibiting peripheral deletion. J Immunol 164:107–112

    CAS  PubMed  Google Scholar 

  62. McAdam AJ, Chang TT, Lumelsky AE, Greenfield EA, Boussiotis VA, Duke-Cohan JS, Chernova T, Malenkovich N, Jabs C, Kuchroo VK, Ling V, Collins M, Sharpe AH, Freeman GJ (2000) Mouse inducible costimulatory molecule (ICOS) expression is enhanced by CD28 costimulation and regulates differentiation of CD4+ T cells. J Immunol 165:5035–5040

    CAS  PubMed  Google Scholar 

  63. Melero I, Shuford WW, Newby SA, Aruffo A, Ledbetter JA, Hellstrom KE, Mittler RS, Chen L (1997) Monoclonal antibodies against the 4-1BB T-cell activation molecule eradicate established tumors. Nat Med 3:682–685

    CAS  PubMed  Google Scholar 

  64. Melero I, Bach N, Hellstrom KE, Aruffo A, Mittler RS, Chen L (1998) Amplification of tumor immunity by gene transfer of the co-stimulatory 4-1BB ligand: synergy with the CD28 co-stimulatory pathway. Eur J Immunol 28:1116–1121

    Article  CAS  PubMed  Google Scholar 

  65. Morris A, Vetto JT, Ramstad T, Funatake CJ, Choolun E, Entwisle C, Weinberg AD (2001) Induction of anti-mammary cancer immunity by engaging the OX-40 receptor in vivo. Breast Cancer Res Treat 67:71–80

    Article  CAS  PubMed  Google Scholar 

  66. Mueller DL, Jenkins MK, Schwartz RH (1989) Clonal expansion versus functional clonal inactivation: a costimulatory signalling pathway determines the outcome of T cell antigen receptor occupancy. Annu Rev Immunol 7:445–480

    CAS  PubMed  Google Scholar 

  67. Nishimura H, Nose M, Hiai H, Minato N, Honjo T (1999) Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity 11:141–151

    CAS  PubMed  Google Scholar 

  68. Nishimura H, Honjo T (2001) PD-1: an inhibitory immunoreceptor involved in peripheral tolerance. Trends Immunol 22:265–268

    Article  CAS  PubMed  Google Scholar 

  69. Nishimura H, Okazaki T, Tanaka Y, Nakatani K, Hara M, Matsumori A, Sasayama S, Mizoguchi A, Hiai H, Minato N, Honjo T (2001) Autoimmune dilated cardiomyopathy in PD-1 receptor-deficient mice. Science 291:319–322

    Article  CAS  PubMed  Google Scholar 

  70. Noguchi M, Imaizumi K, Kawabe T, Wakayama H, Horio Y, Sekido Y, Hara T, Hashimoto N, Takahashi M, Shimokata K, Hasegawa Y (2001) Induction of antitumor immunity by transduction of CD40 ligand gene and interferon-gamma gene into lung cancer. Cancer Gene Ther 8:421–429

    Article  CAS  PubMed  Google Scholar 

  71. Ohshima Y, Tanaka Y, Tozawa H, Takahashi Y, Maliszewski C, Delespesse G (1997) Expression and function of OX40 ligand on human dendritic cells. J Immunol 159:3838–3848

    CAS  PubMed  Google Scholar 

  72. Pan PY, Zang Y, Weber K, Meseck ML, Chen SH (2002) OX40 ligation enhances primary and memory cytotoxic T lymphocyte responses in an immunotherapy for hepatic colon metastases. Mol Ther 6:528–536

    Article  CAS  PubMed  Google Scholar 

  73. Peter I, Nawrath M, Kamarashev J, Odermatt B, Mezzacasa A, Hemmi S (2002) Immunotherapy for murine K1735 melanoma: combinatorial use of recombinant adenovirus expressing CD40L and other immunomodulators. Cancer Gene Ther 9:597–605

    Article  CAS  PubMed  Google Scholar 

  74. Saoulli K, Lee SY, Cannons JL, Yeh WC, Santana A, Goldstein MD, Bangia N, DeBenedette MA, Mak TW, Choi Y, Watts TH (1998) CD28-independent, TRAF2-dependent costimulation of resting T cells by 4-1BB ligand. J Exp Med 187:1849–1862

    Article  CAS  PubMed  Google Scholar 

  75. Schwartz RH (1990) A cell culture model for T lymphocyte clonal anergy. Science 248:1349–1356

    Google Scholar 

  76. Shahinian A, Pfeffer K, Lee KP, Kundig TM, Kishihara K, Wakeham A, Kawai K, Ohashi PS, Thompson CB, Mak TW (1993) Differential T cell costimulatory requirements in CD28-deficient mice. Science 261:609–612

    CAS  PubMed  Google Scholar 

  77. Shuford WW, Klussman K, Tritchler DD, Loo DT, Chalupny J, Siadak AW, Brown TJ, Emswiler J, Raecho H, Larsen CP, Pearson TC, Ledbetter JA, Aruffo A, Mittler RS (1997) 4-1BB costimulatory signals preferentially induce CD8+ T cell proliferation and lead to the amplification in vivo of cytotoxic T cell responses. J Exp Med 186:47–55

    Article  CAS  PubMed  Google Scholar 

  78. Sun Y, Peng D, Lecanda J, Schmitz V, Barajas M, Qian C, Prieto J (2000) In vivo gene transfer of CD40 ligand into colon cancer cells induces local production of cytokines and chemokines, tumor eradication and protective antitumor immunity. Gene Ther 7:1467–1476

    Article  CAS  PubMed  Google Scholar 

  79. Swallow MM, Wallin JJ, Sha WC (1999) B7h, a novel costimulatory homolog of B7.1 and B7.2, is induced by TNFalpha. Immunity 11:423–432

    CAS  PubMed  Google Scholar 

  80. Tivol EA, Borriello F, Schweitzer AN, Lynch WP, Bluestone JA, Sharpe AH (1995) Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity 3:541–547

    CAS  PubMed  Google Scholar 

  81. Townsend SE, Allison JP (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259:368–370

    Google Scholar 

  82. Van Elsas A, Hurwitz AA, Allison JP (1999) Combination immunotherapy of B16 melanoma using anti-cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF)-producing vaccines induces rejection of subcutaneous and metastatic tumors accompanied by autoimmune depigmentation. J Exp Med 190:355–366

    PubMed  Google Scholar 

  83. Van Ginderachter JA, Liu Y, Geldhof AB, Brijs L, Thielemans K, De Baetselier P, Raes G (2000) B7-1, IFN gamma and anti-CTLA-4 co-operate to prevent T-cell tolerization during immunotherapy against a murine T-lymphoma. Int J Cancer 87:539–547

    Article  PubMed  Google Scholar 

  84. Vetto JT, Lum S, Morris A, Sicotte M, Davis J, Lemon M, Weinberg A (1997) Presence of the T-cell activation marker OX-40 on tumor infiltrating lymphocytes and draining lymph node cells from patients with melanoma and head and neck cancers. Am J Surg 174:258–265

    Article  CAS  PubMed  Google Scholar 

  85. Vinay DS, Kwon BS (1998) Role of 4-1BB in immune responses. Semin Immunol 10:481–489

    PubMed  Google Scholar 

  86. von Mehren M, Arlen P, Tsang KY, Rogatko A, Meropol N, Cooper HS, Davey M, McLaughlin S, Schlom J, Weiner LM (2000) Pilot study of a dual gene recombinant avipox vaccine containing both carcinoembryonic antigen (CEA) and B7.1 transgenes in patients with recurrent CEA-expressing adenocarcinomas. Clin Cancer Res 6:2219–2228

    PubMed  Google Scholar 

  87. von Mehren M, Arlen P, Gulley J, Rogatko A, Cooper HS, Meropol NJ, Alpaugh RK, Davey M, McLaughlin S, Beard MT, Tsang KY, Schlom J, Weiner LM (2001) The influence of granulocyte macrophage colony-stimulating factor and prior chemotherapy on the immunological response to a vaccine (ALVAC-CEA B7.1) in patients with metastatic carcinoma. Clin Cancer Res 7:1181–1191

    PubMed  Google Scholar 

  88. Vonderheide RH, Dutcher JP, Anderson JE, Eckhardt SG, Stephans KF, Razvillas B, Garl S, Butine MD, Perry VP, Armitage RJ, Ghalie R, Caron DA, Gribben JG (2001) Phase I study of recombinant human CD40 ligand in cancer patients. J Clin Oncol 19:3280–3287

    CAS  PubMed  Google Scholar 

  89. Walker LS, Gulbranson-Judge A, Flynn S, Brocker T, Raykundalia C, Goodall M, Forster R, Lipp M, Lane P (1999) Compromised OX40 function in CD28-deficient mice is linked with failure to develop CXC chemokine receptor 5-positive CD4 cells and germinal centers. J Exp Med 190:1115–1122

    Article  CAS  PubMed  Google Scholar 

  90. Wallin JJ, Liang L, Bakardjiev A, Sha WC (2001) Enhancement of CD8+ T cell responses by ICOS/B7h costimulation. J Immunol 167:132–139

    CAS  PubMed  Google Scholar 

  91. Walunas TL, Bakker CY, Bluestone JA (1996) CTLA-4 ligation blocks CD28-dependent T cell activation. J Exp Med 183:2541–2550

    CAS  PubMed  Google Scholar 

  92. Wang S, Bajorath J, Flies DB, Dong H, Honjo T, Chen L (2003) Molecular modeling and functional mapping of B7-H1 and B7-DC uncouple costimulatory function from PD-1 interaction. J Exp Med 197:1083-1091

    Article  CAS  PubMed  Google Scholar 

  93. Waterhouse P, Penninger JM, Timms E, Wakeham A, Shahinian A, Lee KP, Thompson CB, Griesser H, Mak TW (1995) Lymphoproliferative disorders with early lethality in mice deficient in Ctla-4. Science 270:985–988

    Google Scholar 

  94. Weinberg AD, Vella AT, Croft M (1998) OX-40: life beyond the effector T cell stage. Semin Immunol 10:471–480

    Article  CAS  PubMed  Google Scholar 

  95. Weinberg AD, Rivera MM, Prell R, Morris A, Ramstad T, Vetto JT, Urba WJ, Alvord G, Bunce C, Shields J (2000) Engagement of the OX-40 receptor in vivo enhances antitumor immunity. J Immunol 164:2160–2169

    CAS  PubMed  Google Scholar 

  96. Wierda WG, Cantwell MJ, Woods SJ, Rassenti LZ, Prussak CE, Kipps TJ (2000) CD40-ligand (CD154) gene therapy for chronic lymphocytic leukemia. Blood 96:2917–2924

    CAS  PubMed  Google Scholar 

  97. Xiang R, Primus FJ, Ruehlmann JM, Niethammer AG, Silletti S, Lode HN, Dolman CS, Gillies SD, Reisfeld RA (2001) A dual-function DNA vaccine encoding carcinoembryonic antigen and CD40 ligand trimer induces T cell-mediated protective immunity against colon cancer in carcinoembryonic antigen-transgenic mice. J Immunol 167:4560–4565

    CAS  PubMed  Google Scholar 

  98. Yamazaki T, Akiba H, Iwai H, Matsuda H, Aoki M, Tanno Y, Shin T, Tsuchiya H, Pardoll DM, Okumura K, Azuma M, Yagita H (2002) Expression of programmed death 1 ligands by murine T cells and APC. J Immunol 169:5538–5545

    CAS  PubMed  Google Scholar 

  99. Yoshinaga SK, Whoriskey JS, Khare SD, Sarmiento U, Guo J, Horan T, Shih G, Zhang M, Coccia MA, Kohno T, Tafuri-Bladt A, Brankow D, Campbell P, Chang D, Chiu L, Dai T, Duncan G, Elliott GS, Hui A, McCabe SM, Scully S, Shahinian A, Shaklee CL, Van G, Mak TW et al (1999) T-cell co-stimulation through B7RP-1 and ICOS. Nature 402:827–832

    Article  CAS  PubMed  Google Scholar 

  100. Yoshinaga SK, Zhang M, Pistillo J, Horan T, Khare SD, Miner K, Sonnenberg M, Boone T, Brankow D, Dai T, Delaney J, Han H, Hui A, Kohno T, Manoukian R, Whoriskey JS, Coccia MA (2000) Characterization of a new human B7-related protein: B7RP-1 is the ligand to the co-stimulatory protein ICOS. Int Immunol 12:1439–1447

    Article  CAS  PubMed  Google Scholar 

  101. Zhu M, Terasawa H, Gulley J, Panicali D, Arlen P, Schlom J, Tsang KY (2001) Enhanced activation of human T cells via avipox vector-mediated hyperexpression of a triad of costimulatory molecules in human dendritic cells. Cancer Res 61:3725–3734

    CAS  PubMed  Google Scholar 

  102. Zitvogel L, Robbins PD, Storkus WJ, Clarke MR, Maeurer MJ, Campbell RL, Davis CG, Tahara H, Schreiber RD, Lotze MT (1996) Interleukin-12 and B7.1 co-stimulation cooperate in the induction of effective antitumor immunity and therapy of established tumors. Eur J Immunol 26:1335–1341

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur A. Hurwitz.

Additional information

This article forms part of the Symposium in Writing on "Cellular immunity for cancer chemoimmunotherapy" in Volume 52 (2003)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vesosky, B., Hurwitz, A.A. Modulation of costimulation to enhance tumor immunity. Cancer Immunol Immunother 52, 663–669 (2003). https://doi.org/10.1007/s00262-003-0424-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-003-0424-5

Keywords

Navigation