Skip to main content
Log in

Injection by various routes of melanoma antigen-associated macrophages: biodistribution and clinical effects

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Patients' autologous macrophages (AM) were used as antigen-presenting cells (APC) in a vaccination protocol against malignant melanoma. AM were administered by various routes, including intralymphatic, since these cells did not express CCR7, a molecule required for APC migration to lymph nodes. Seven HLA-A2 patients with metastatic melanoma—two classified as M1 and five as M3—were included in the study. AM were produced from leukapheresis-separated mononuclear cells by 7-day culture with granulocyte-macrophage colony-stimulating factor. After separation by elutriation, AM were frozen in aliquots and subsequently thawed at monthly intervals, exposed to MAGE-3(271–279) peptide and injected subcutaneously into lymph nodes or into one peripheral lymph vessel. Intradermal tests were performed before and after treatment to determine peptide reactivity. No acute toxicity was observed following injection. One M1 patient had a 7-mm induration intradermal reaction response and was stabilized for 64 weeks. The M3 patients did not show any immunological or clinical response. In 11 patients, the biodistribution of 111In-labeled AM was investigated. There was no clear evidence that AM injected intradermally or subcutaneously left the site of injection. After injection into a lymph vessel of the foot region, scintigraphs showed five to ten popliteal and inguinocrural lymph nodes. This appeared to be the most efficient way to administer rapidly and safely large amounts of peptide-loaded APC into lymph nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6A, B.

Similar content being viewed by others

References

  1. Mukherji B, Chakraborty NG, Yamasaki S, et al (1995) Induction of antigen-specific cytolytic T cells in situ in human melanoma by immunization with synthetic peptide-pulsed autologous antigen presenting cells. Proc Natl Acad Sci U S A 92:8078

    CAS  PubMed  Google Scholar 

  2. Nestle FO, Alijagic S, Gilliet M, et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328

    CAS  PubMed  Google Scholar 

  3. Morse MA, Lyerly HK, Li Y (1999) The role of IL-13 in the generation of dendritic cells in vitro. J Immunother 22:506

    CAS  PubMed  Google Scholar 

  4. Toujas L, Delcros JG, Diez E, et al (1997) Human monocyte-derived macrophages and dendritic cells are comparably effective in vitro in presenting HLA class-restricted exogenous peptides. Immunology 91:635

    CAS  PubMed  Google Scholar 

  5. Lesimple T, Moisan A, Toujas L (1998) Autologous macrophages and antitumour cell therapy. Res Immunol 149:663

    Article  CAS  PubMed  Google Scholar 

  6. Lappin MB, Weiss JM, Delattre V, et al (1999) Analysis of mouse dendritic cell migration in vivo upon subcutaneous and intravenous injection. Immunology 98:181

    CAS  PubMed  Google Scholar 

  7. Hermans IF, Ritchie DS, Yang J, et al (2000) CD8+ T cell-dependent elimination of dendritic cells in vivo limits the induction of antitumor immunity. J Immunol 164:3095

    CAS  PubMed  Google Scholar 

  8. Balch CM, Buzaid AC, Atkins MB, et al (2000) A new American Joint Committee on Cancer staging system for cutaneous melanoma. Cancer 88:1484

    Article  CAS  PubMed  Google Scholar 

  9. Quillien V, Raoul JL, Heresbach D, et al (1997) Expression of MAGE genes in esophageal squamous cell carcinoma. Anticancer Res 17:387

    CAS  PubMed  Google Scholar 

  10. Lesimple T, Moisan A, Guillé F, et al (2000) Treatment of metastatic renal carcinoma with activated autologous macrophages and granulocyte-macrophage colony-stimulating factor. J Immunother 23:675

    Article  CAS  Google Scholar 

  11. Musson RA, Henson PM (1979) Humoral and formed elements of blood modulate the response of peripheral blood monocytes. I. Plasma and serum inhibit and platelets enhance monocyte adherence. J Immunol 122:2026

    CAS  PubMed  Google Scholar 

  12. Quillien V, Moisan A, Lesimple T, et al (2001) Biodistribution of 111-indium-labelled macrophages infused intravenously in patients with renal carcinoma. Cancer Immunol Immunother 50:477

    Article  CAS  PubMed  Google Scholar 

  13. Marienhagen J, Hennemann B, Andreesen R, Eilles C (1995) 111In-oxine labelling of tumour-cytotoxic macrophages generated in vitro from circulating blood monocytes: an in vitro evaluation. Nucl Med Commun 16:357

    CAS  PubMed  Google Scholar 

  14. Boon T, Coulie P, Karanikas V, et al (2001) Therapeutic vaccination with tumor antigens recognized by cytolytic T lymphocytes. Melanoma Res 11:538

    Google Scholar 

  15. Brasseur F, Rimoldi D, Lienard D, et al (1995) Expression of MAGE genes in primary and metastatic cutaneous melanoma. Int J Cancer 63:375

    CAS  PubMed  Google Scholar 

  16. Van der Bruggen P, Bastin J, Gajewski T, et al (1994) A peptide encoded by human gene MAGE-3 and presented by HLA-A2 induces cytolytic T lymphocytes that recognize tumor cells expressing MAGE-3. Eur J Immunol 24:3038

    Google Scholar 

  17. Tjandrawan T, Martin DM, Maeurer MJ, et al (1998) Autologous human dendriphages pulsed with synthetic or natural tumor peptides elicit tumor-specific CTLs in vitro. J Immunother 21:149

    Google Scholar 

  18. Kawashima I, Hudson SJ, Tsai V, et al (1998) The multi-epitope approach for immunotherapy for cancer: identification of several CTL epitopes from various tumor-associated antigens expressed on solid epithelial tumors. Hum Immunol 59:1

    Article  Google Scholar 

  19. Kanaoka S, Yamasaki S, Okino T, et al (1999) Induction of human leukocyte antigen (HLA)-A2-restricted and MAGE-3-gene-derived peptide-specific cytolytic T lymphocytes using cultured dendritic cells from an HLA-A2 esophageal cancer patient. J Surg Oncol 71:16

    CAS  PubMed  Google Scholar 

  20. Takaki T, Hiraki A, Uenaka A, et al (1998) Variable expression on lung cancer cell lines of HLA-A2-binding MAGE-3 peptide recognized by cytotoxic T lymphocytes. Int J Oncol 12:1103

    Google Scholar 

  21. Chaux P, Luiten R, Demotte N, et al (1999) Identification of five MAGE-A1 epitopes recognized by cytolytic T lymphocytes obtained by in vitro stimulation with dendritic cells transduced with MAGE-A1. J Immunol 163:2928

    CAS  PubMed  Google Scholar 

  22. Labarriere N, Pandolfino MC, Raingeard D, et al (1998) Frequency and relative fraction of tumor antigen-specific T cells among lymphocytes from melanoma-invaded lymph nodes. Int J Cancer 78:209

    Article  CAS  PubMed  Google Scholar 

  23. Valmori D, Gileadi U, Servis C, et al (1999) Modulation of proteasomal activity required for the generation of a cytotoxic T lymphocyte-defined peptide derived from the tumor antigen MAGE-3. J Exp Med 189:895

    CAS  PubMed  Google Scholar 

  24. Gajewski TF, Fallarino F, Ashikari A, Sherman M (2001) Immunization of HLA-A2+ melanoma patients with MAGE-3 or MelanA peptide-pulsed autologous peripheral blood mononuclear cells plus recombinant human interleukin. Clin Cancer Res 7 [3 Suppl]:895s

  25. Schuler-Thurner B, Dieckmann D, Keikavoussi P, et al (2000) Mage-3 and influenza-matrix peptide-specific cytotoxic T cells are inducible in terminal stage HLA-A2.1+ melanoma patients by mature monocyte-derived dendritic cells. J Immunol 165:3492

    CAS  PubMed  Google Scholar 

  26. Eggert AA, Schreurs MW, Boerman OC, et al (1999) Biodistribution and vaccine efficiency of murine dendritic cells are dependent on the route of administration. Cancer Res 59:3340

    CAS  PubMed  Google Scholar 

  27. Barratt-Boyes SM, Watkins SC, Finn OJ (1997) In vivo migration of dendritic cells differentiated in vitro: a chimpanzee model. J Immunol 158:4543

    CAS  PubMed  Google Scholar 

  28. Barratt-Boyes SM, Watkins SC, Finn OJ (1997) Migration of cultured chimpanzee dendritic cells following intravenous and subcutaneous injection. Adv Exp Med Biol 417:71

    CAS  PubMed  Google Scholar 

  29. Morse MA, Coleman RE, Akabani G, et al (1999) Migration of human dendritic cells after injection in patients with metastatic malignancies. Cancer Res 59:56

    CAS  PubMed  Google Scholar 

  30. Thomas R, Chambers M, Boytar R, et al (1999) Immature human monocyte-derived dendritic cells migrate rapidly to draining lymph nodes after intradermal injection for melanoma immunotherapy. J Melanoma Res 5:474

    Google Scholar 

  31. Sallusto F, Lanzavecchia A (2000) Understanding dendritic cell and T-lymphocyte traffic through the analysis of chemokine receptor expression. Immunol Rev 177:134

    CAS  PubMed  Google Scholar 

  32. Mackensen A, Krause T, Blum U, et al (1999) Homing of intravenously and intralymphatically injected human dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells. Cancer Immunol Immunother 48:118

    Article  CAS  PubMed  Google Scholar 

  33. Lambert LA, Gibson GR, Maloney M, et al (2001) Intranodal immunization with tumor lysate-pulsed dendritic cells enhances protective antitumor immunity. Cancer Res 61:641

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Annette Gaudin, Anne Trichet and Sandrine Abgrall for their skilled technical assistance. This work was supported by the Comités départementaux d'Ille-et-Vilaine et du Morbihan de la Ligue nationale contre le Cancer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Lesimple.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lesimple, T., Moisan, A., Carsin, A. et al. Injection by various routes of melanoma antigen-associated macrophages: biodistribution and clinical effects. Cancer Immunol Immunother 52, 438–444 (2003). https://doi.org/10.1007/s00262-003-0390-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-003-0390-y

Keywords

Navigation