Skip to main content
Log in

Evaluation of perfusion CT and dual-energy CT for predicting microvascular invasion of hepatocellular carcinoma

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

Evaluation of perfusion CT and dual-energy CT (DECT) quantitative parameters for predicting microvascular invasion (MVI) of hepatocellular carcinoma (HCC) prior to surgery.

Methods

This prospective single-center study included fifty-six patients (44 men; median age 67; range 31–84) who provided written informed consent. Inclusion criteria were (1) treatment-naïve patients with a diagnosis of HCC, (2) an indication for hepatic resection, and (3) available arterial DECT phase and perfusion CT (GE revolution HD-GSI). Iodine concentrations (IC), arterial density (AD), and 9 quantitative perfusion parameters for HCC were correlated to pathological results. Radiological parameters based principal component analysis (PCA), corroborated by unsupervised heatmap classification, was meant to deliver a model for predicting MVI in HCC. Survival analysis was performed using univariable log-rank test and multivariable Cox model, both censored at time of relapse.

Results

58 HCC lesions were analyzed (median size 42.3 mm; range of 20–140). PCA showed that the radiological model was predictive of tumor grade (p = 0.01), intratumoral MVI (p = 0.004), peritumoral MVI (p = 0.04), MTM (macrotrabecular-massive) subtype (p = 0.02), and capsular invasion (p = 0.02) in HCC. Heatmap classification of HCC showed tumor heterogeneity, stratified into three main clusters according to the risk of relapse. Survival analysis confirmed that permeability surface-area product (PS) was the only significant independent parameter, among all quantitative tumoral CT parameters, for predicting a risk of relapse (Cox p value = 0.004).

Conclusion

A perfusion CT and DECT-based quantitative imaging profile can provide a diagnosis of histological MVI in HCC. PS is an independent parameter for relapse.

Clinical trials

ClinicalTrials.gov: NCT03754192.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

DECT:

Dual-energy CT

DLP:

Dose Length Product

HCC:

Hepatocellular carcinoma

MVI:

Microvascular invasion

MTM:

Macrotrabecular-massive

PCA:

Principal component analysis

HaBF:

Hepatic arterial Blood Flow

HAF:

Hepatic arterial flow

BF:

Blood flow

BV:

Blood volume

MSI:

Mean slope of increase

TTP:

Time to peak

MTT:

Mean Transit Time

PS:

Permeability surface-area produce

WHO:

World Health Organization

References

  1. Llovet JM, Kelley RK, Villanueva A et al (2021) Hepatocellular carcinoma. Nat Rev Dis Primers 7:6. https://doi.org/10.1038/s41572-020-00240-3

    Article  PubMed  Google Scholar 

  2. Imamura, H, Matsuyama Y, Tanaka E et al (2003) Risk factors contributing to early and late phase intrahepatic recurrence of hepatocellular carcinoma after hepatectomy. J Hepatol 38:200-7. https://doi.org/10.1016/s0168-8278(02)00360-4

    Article  PubMed  Google Scholar 

  3. Ziol M, Poté N, Amaddeo G et al (2018) Macrotrabecular-massive hepatocellular carcinoma: A distinctive histological subtype with clinical relevance. Hepatology 68:103-112. https://doi.org/10.1002/hep.29762

    Article  PubMed  Google Scholar 

  4. Calderaro J, Couchy G, Imbeaud S et al (2017) Histological subtypes of hepatocellular carcinoma are related to gene mutations and molecular tumour classification. J Hepatol 67:727-738. https://doi.org/10.1016/j.jhep.2017.05.014

    Article  CAS  PubMed  Google Scholar 

  5. Mulé S, Galletto Pregliasco A, Tenenhaus A et al (2020) Multiphase liver MRI for identifying the macrotrabecular-massive subtype of hepatocellular carcinoma. Radiology 295:562-571. https://doi.org/10.1148/radiol.2020192230

    Article  PubMed  Google Scholar 

  6. Choi JY, Lee JM, Sirlin CB (2014) CT and MR imaging diagnosis and staging of hepatocellular carcinoma : part I. Development, growth, and spread: key pathologic and imaging aspects. Radiology 272:635-54. https://doi.org/10.1148/radiol.14132361

    Article  PubMed  Google Scholar 

  7. Reginelli A, Vacca G, Segreto T et al (2018) Can microvascular invasion in hepatocellular carcinoma be predicted by diagnostic imaging? A critical review. Future Oncol 14:2985-2994. https://doi.org/10.2217/fon-2018-0175

    Article  CAS  PubMed  Google Scholar 

  8. Chou CT, Chen RC, Lin WC, Ko CJ, Chen CB, Chen YL (2014) Prediction of microvascular invasion of hepatocellular carcinoma: preoperative CT and histopathologic correlation. AJR Am J Roentgenol. 203:W253-9. https://doi.org/10.2214/AJR.13.10595

    Article  PubMed  Google Scholar 

  9. An C, Kim DW, Park YN, Chung YE, Rhee H, Kim MJ (2015) Single hepatocellular carcinoma: Preoperative MR imaging to predict early recurrence after curative resection. Radiology 276:433-43. https://doi.org/10.1148/radiol.15142394

    Article  PubMed  Google Scholar 

  10. Renzulli M, Brocchi S, Cucchetti A et al (2016) Can current preoperative imaging be used to detect microvascular invasion of hepatocellular carcinoma? Radiology 279:432-42. https://doi.org/10.1148/radiol.2015150998

    Article  PubMed  Google Scholar 

  11. Lee S, Kim SH, Lee JE, Sinn DH, Park CK (2017) Preoperative gadoxetic acid–enhanced MRI for predicting microvascular invasion in patients with single hepatocellular carcinoma. J Hepatol 67:526–534. https://doi.org/10.1016/j.jhep.2017.04.024

    Article  CAS  PubMed  Google Scholar 

  12. Bakr S, Gevaert O, Patel B et al (2020) Interreader variability in semantic annotation of microvascular invasion in hepatocellular carcinoma on contrast-enhanced triphasic CT images. Radiol Imaging Cancer. https://doi.org/10.1148/rycan.2020190062. https://doi.org/10.1148/rycan.2020190062

    Article  PubMed  PubMed Central  Google Scholar 

  13. Min JH, Lee MW, Park HS et al (2020) Interobserver variability and diagnostic performance of gadoxetic acid-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma. Radiology 297:573-581. https://doi.org/10.1148/radiol.2020201940

    Article  PubMed  Google Scholar 

  14. Chen J, Zhou J, Kuang S et al (2019) Liver Imaging Reporting and Data System Category 5: MRI Predictors of Microvascular Invasion and Recurrence After Hepatectomy for Hepatocellular Carcinoma. AJR Am J Roentgenol 213:821-830. https://doi.org/10.2214/AJR.19.21168

    Article  PubMed  Google Scholar 

  15. Segal E, Sirlin CB, Ooi C et al (2007) Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25:675-80. https://doi.org/10.1038/nbt1306

    Article  CAS  PubMed  Google Scholar 

  16. Lambin P, Rios-Velazquez E, Leijenaar R et al (2012) Radiomics: extracting more information from medical images using advanced feature analysis. Eur J Cancer 48:441-6. https://doi.org/10.1016/j.ejca.2011.11.036

    Article  PubMed  PubMed Central  Google Scholar 

  17. Miranda Magalhaes Santos JM, Clemente Oliveira B, Araujo-Filho JAB et al (2020) State-of-the-art in radiomics of hepatocellular carcinoma: a review of basic principles, applications, and limitations. Abdom Radiol (NY) 45:342-353. https://doi.org/10.1007/s00261-019-02299-3

    Article  Google Scholar 

  18. Wakabayashi T, Ouhmich F, Gonzalez-Cabrera C et al (2019) Radiomics in hepatocellular carcinoma: a quantitative review. Hepatol Int 13:546-559. https://doi.org/10.1007/s12072-019-09973-0

    Article  PubMed  Google Scholar 

  19. Kim SH, Kamaya A, Willmann JK (2014) CT Perfusion of the liver: principles and applications in oncology. Radiology 272:322-44. https://doi.org/10.1148/radiol.14130091

    Article  PubMed  Google Scholar 

  20. Okada M, Kim T, Murakami T (2011) Hepatocellular nodules in liver cirrhosis: state of the art CT evaluation (perfusion CT/volume helical shuttle scan/dual-energy CT, etc.). Abdom Imaging 36:273-81. https://doi.org/10.1007/s00261-011-9684-2

    Article  PubMed  Google Scholar 

  21. Sahani DV, Holalkere NS, Mueller PR, Zhu AX (2007) Advanced hepatocellular carcinoma : CT perfusion of liver and tumor tissue--initial experience. Radiology 243:736-43. https://doi.org/10.1148/radiol.2433052020

    Article  PubMed  Google Scholar 

  22. Agrawal MD, Pinho DF, Kulkarni NM, Hahn PF, Guimaraes AR, Sahani DV. Oncologic Applications of Dual-Energy CT in the Abdomen. Radiographics. 2014;34:589-612. https://doi.org/10.1148/rg.343135041

    Article  PubMed  Google Scholar 

  23. Dai X, Schlemmer HP, Schmidt B et al (2013) Quantitative therapy response assessment by volumetric iodine-uptake measurement: initial experience in patients with advanced hepatocellular carcinoma treated with sorafenib. Eur J Radiol 82:327-34. https://doi.org/10.1016/j.ejrad.2012.11.013

    Article  PubMed  Google Scholar 

  24. Thaiss WM, Haberland U, Kaufmann S et al (2016) Iodine concentration as a perfusion surrogate marker in oncology: Further elucidation of the underlying mechanisms using volume perfusion CT with 80 kVp. Eur Radiol 26:2929-36. https://doi.org/10.1007/s00330-015-4154-9

    Article  PubMed  Google Scholar 

  25. Gordic S, Puippe GD, Krauss B et al (2016) Correlation between dual-energy and perfusion CT in patients with hepatocellular carcinoma. Radiology. 280:78-87. https://doi.org/10.1148/radiol.2015151560

    Article  PubMed  Google Scholar 

  26. Mulé S, Pigneur F, Quelever R et al (2018) Can dual-energy CT replace perfusion CT for the functional evaluation of advanced hepatocellular carcinoma? Eur Radiol 28:1977-1985. https://doi.org/10.1007/s00330-017-5151-y

    Article  PubMed  Google Scholar 

  27. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol. 49:1373-9. https://doi.org/10.1016/s0895-4356(96)00236-3

    Article  CAS  PubMed  Google Scholar 

  28. Liu PH, Hsu CY, Hsia CYet al (2016) Prognosis of hepatocellular carcinoma: Assessment of eleven staging systems. J Hepatol. 64:601-8. https://doi.org/10.1016/j.jhep.2015.10.029

    Article  CAS  PubMed  Google Scholar 

  29. Lê S, Josse J, Husson F (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software 25: 1–18. https://doi.org/10.18637/jss.v025.i01

  30. Kolde R (2019) Pheatmap: Pretty Heatmaps. Implementation of heatmaps that offers more control over dimensions and appearance. https://CRAN.R-project.org/package=pheatmap

  31. R Core Team (2022) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org

  32. Ippolito D, Querques G, Okolicsanyi S, Franzesi CT, Strazzabosco M, Sironi S (2017) Diagnostic value of dynamic contrast-enhanced CT with perfusion imaging in the quantitative assessment of tumor response to sorafenib in patients with advanced hepatocellular carcinoma: A feasibility study. Eur J Radiol 90:34-41. https://doi.org/10.1016/j.ejrad.2017.02.027

    Article  PubMed  Google Scholar 

  33. Banerjee S, Wang DS, Kim HJ et al (2015) A computed tomography radiogenomic biomarker predicts microvascular invasion and clinical outcomes in hepatocellular carcinoma. Hepatology 62:792-800. https://doi.org/10.1002/hep.27877

    Article  PubMed  Google Scholar 

  34. Xu X, Zhang HL, Liu QP et al (2019) Radiomic analysis of contrast-enhanced CT predicts microvascular invasion and outcome in hepatocellular carcinoma. J Hepatol 70:1133-1144. https://doi.org/10.1016/j.jhep.2019.02.023

    Article  PubMed  Google Scholar 

  35. Ma X, Wei J, Gu D et al (2019) Preoperative radiomics nomogram for microvascular invasion prediction in hepatocellular carcinoma using contrast-enhanced CT. Eur Radiol 29:3595-3605. https://doi.org/10.1007/s00330-018-5985-y

    Article  PubMed  Google Scholar 

  36. Kim TM, Lee JM, Yoon JH et al (2020) Prediction of microvascular invasion of hepatocellular carcinoma: value of volumetric iodine quantification using preoperative dual-energy computed tomography. Cancer Imaging 2020;20(1):60. https://doi.org/10.1186/s40644-020-00338-7

    Article  PubMed  PubMed Central  Google Scholar 

  37. Ji GW, Zhu FP, Xu Q et al (2020) Radiomic features at contrast-enhanced CT predict recurrence in early stage hepatocellular Carcinoma: A multi-institutional study. Radiology 294:568-579. https://doi.org/10.1148/radiol.2020191470

    Article  PubMed  Google Scholar 

  38. Taouli B, Hoshida Y, Kakite S et al (2017) Imaging-based surrogate markers of transcriptome subclasses and signatures in hepatocellular carcinoma: preliminary results. Eur Radiol 27:4472–4481. https://doi.org/10.1007/s00330-017-4844-6

    Article  PubMed  PubMed Central  Google Scholar 

  39. García-Figueiras R, Goh VJ, Padhani AR et al (2013) CT perfusion in oncologic imaging: a useful tool? AJR Am J Roentgenol 200:8-19. https://doi.org/10.2214/AJR.11.8476

    Article  PubMed  Google Scholar 

  40. Zhu AX, Holalkere NS, Muzikansky A, Horgan K, Sahani DV (2008) Early antiangiogenic activity of bevacizumab evaluated by computed tomography perfusion scan in patients with advanced hepatocellular carcinoma. Oncologist 13:120-5. https://doi.org/10.1634/theoncologist.2007-0174

    Article  CAS  PubMed  Google Scholar 

  41. Van Beers BE, Leconte I, Materne R, Smith AM, Jamart J, Horsmans Y (2001) Hepatic perfusion parameters in chronic liver disease: dynamic CT measurements correlated with disease severity. AJR Am J Roentgenol 176:667-73. https://doi.org/10.2214/ajr.176.3.1760667

    Article  PubMed  Google Scholar 

  42. Ronot M, Asselah T, Paradis V et al (2010) Liver fibrosis in chronic hepatitis C virus infection: differentiating minimal from intermediate fibrosis with perfusion CT. Radiology 256:135-42. https://doi.org/10.1148/radiol.10091295

    Article  PubMed  Google Scholar 

  43. Goh V, Halligan S, Bartram CI (2007) Quantitative tumor perfusion assessment with multidetector CT: are measurements from two commercial software packages interchangeable? Radiology 242: 777-82. https://doi.org/10.1148/radiol.2423060279

    Article  PubMed  Google Scholar 

  44. Bretas EAS, Torres US, Torres LR et al (2017) Is liver perfusion CT reproducible? A study on intra- and interobserver agreement of normal hepatic haemodynamic parameters obtained with two different software packages. Br J Radiol. 90(1078):20170214. https://doi.org/10.1259/bjr.20170214

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The sponsor was Assistance Publique-Hôpitaux de Paris (Direction de la Recherche Clinique et de l’Innovation). The authors thank Eddy ROUAG and Magali COQUERY for their support.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

The scientific guarantor of this publication is Maïté Lewin. The study conception and design were performed by ML and CG; Formal analysis and investigation were performed by AL-B, AR, JAF, JF; Statistic was performed by CD; Methodology was performed by HA; Writing review and editing were performed by ML, CG, J-CN, EV. All authors read and approved the final manuscript. All authors agree the article to be published.

Corresponding author

Correspondence to Maïté Lewin.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethical approval

This study was approved by our institutional review board (C.P.P Ouest V, 18/074-2).

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

Consent to publish de-identified images and data were included in the informed consent process.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lewin, M., Laurent-Bellue, A., Desterke, C. et al. Evaluation of perfusion CT and dual-energy CT for predicting microvascular invasion of hepatocellular carcinoma. Abdom Radiol 47, 2115–2127 (2022). https://doi.org/10.1007/s00261-022-03511-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-022-03511-7

Keywords

Navigation