Skip to main content

Advertisement

Log in

Predicting the stages of liver fibrosis with multiphase CT radiomics based on volumetric features

  • Hepatobiliary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purposes

To develop and externally validate a multiphase computed tomography (CT)-based machine learning (ML) model for staging liver fibrosis (LF) by using whole liver slices.

Materials and methods

The development dataset comprised 232 patients with pathological analysis for LF, and the test dataset comprised 100 patients from an independent outside institution. Feature extraction was performed based on the precontrast (PCP), arterial (AP), portal vein (PVP) phase, and three-phase CT images. CatBoost was utilized for ML model investigation by using the features with good reproducibility. The diagnostic performance of ML models based on each single- and three-phase CT image was compared with that of radiologists’ interpretations, the aminotransferase-to-platelet ratio index, and the fibrosis index based on four factors (FIB-4) by using the receiver operating characteristic curve with the area under the curve (AUC) value.

Results

Although the ML model based on three-phase CT image (AUC = 0.65–0.80) achieved higher AUC value than that based on PCP (AUC = 0.56–0.69) and PVP (AUC = 0.51–0.74) in predicting various stage of LF, significant difference was not found. The best CT-based ML model (AUC = 0.65–0.80) outperformed the FIB-4 in differentiating advanced LF and cirrhosis and radiologists’ interpretation (AUC = 0.50–0.76) in the diagnosis of significant and advanced LF.

Conclusion

All PCP, PVP, and three-phase CT-based ML models can be an acceptable in assessing LF, and the performance of the PCP-based ML model is comparable to that of the enhanced CT image-based ML model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hernandez-Gea V, Friedman SL (2011) Pathogenesis of liver fibrosis. Annu Rev Pathol 6:425–56. https://doi.org/10.1146/annurev-pathol-011110-130246

    Article  CAS  PubMed  Google Scholar 

  2. Standish RA, Cholongitas E, Dhillon A, et al (2006) An appraisal of the histopathological assessment of liver fibrosis. Gut 55:569–78. https://doi.org/10.1136/gut.2005.084475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bravo AA, Sheth SG, Chopra S (2001) Liver biopsy. N Engl J Med 344:495–500. https://doi.org/10.1056/NEJM200102153440706

    Article  CAS  PubMed  Google Scholar 

  4. Kim WR, Berg T, Asselah T, et al (2016) Evaluation of APRI and FIB-4 scoring systems for non-invasive assessment of hepatic fibrosis in chronic hepatitis B patients. J Hepatol 64:773–80. https://doi.org/10.1016/j.jhep.2015.11.012

    Article  CAS  PubMed  Google Scholar 

  5. Ragazzo TG, Paranagua-Vezozzo D, Lima FR, et al (2017) Accuracy of transient elastography-FibroScan®, acoustic radiation force impulse (ARFI) imaging, the enhanced liver fibrosis (ELF) test, APRI, and the FIB-4 index compared with liver biopsy in patients with chronic hepatitis C. Clinics (Sao Paulo) 72:516–525. https://doi.org/10.6061/clinics/2017(09)01

    Article  Google Scholar 

  6. Sartoris R, Rautou P-E, Elkrief L, et al (2018) Quantification of Liver Surface Nodularity at CT: Utility for Detection of Portal Hypertension. Radiology 289:698–707. https://doi.org/10.1148/radiol.2018181131

    Article  Google Scholar 

  7. Manka P, Zeller A, Syn W-K (2019) Fibrosis in Chronic Liver Disease: An Update on Diagnostic and Treatment Modalities. Drugs 79:903–927. https://doi.org/10.1007/s40265-019-01126-9

    Article  PubMed  Google Scholar 

  8. Duan J, Hu C, Qiu Q, et al (2019) Characterization of microvessels and parenchyma in in-line phase contrast imaging CT: healthy liver, cirrhosis and hepatocellular carcinoma. Quant Imaging Med Surg 9:1037–1046. https://doi.org/10.21037/qims.2019.06.12

  9. Xiao H, Shi M, Xie Y, Chi X (2017) Comparison of diagnostic accuracy of magnetic resonance elastography and Fibroscan for detecting liver fibrosis in chronic hepatitis B patients: A systematic review and meta-analysis. PLoS One 12:e0186660. https://doi.org/10.1371/journal.pone.0186660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cui E, Li Q, Wu J, et al (2020) Combination of hepatocyte fraction and diffusion-weighted imaging as a predictor in quantitative hepatic fibrosis evaluation. Abdom Radiol (New York). https://doi.org/10.1007/s00261-020-02520-8

    Article  Google Scholar 

  11. Bonekamp S, Kamel I, Solga S, Clark J (2009) Can imaging modalities diagnose and stage hepatic fibrosis and cirrhosis accurately? J Hepatol 50:17–35. https://doi.org/10.1016/j.jhep.2008.10.016

    Article  PubMed  Google Scholar 

  12. Wai C-T, Greenson JK, Fontana RJ, et al (2003) A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology 38:518–526. https://doi.org/10.1053/jhep.2003.50346

    Article  PubMed  Google Scholar 

  13. Sterling RK, Lissen E, Clumeck N, et al (2006) Development of a simple noninvasive index to predict significant fibrosis in patients with HIV/HCV coinfection. Hepatology 43:1317–1325. https://doi.org/10.1002/hep.21178

    Article  CAS  PubMed  Google Scholar 

  14. Bedossa P, Poynard T (1996) An algorithm for the grading of activity in chronic hepatitis C. The METAVIR Cooperative Study Group. Hepatology 24:289–293. https://doi.org/10.1002/hep.510240201

    Article  CAS  Google Scholar 

  15. Matos J, Paparo F, Bacigalupo L, et al (2019) Noninvasive liver fibrosis assessment in chronic viral hepatitis C: agreement among 1D transient elastography, 2D shear wave elastography, and magnetic resonance elastography. Abdom Radiol 44:4011–4021. https://doi.org/10.1007/s00261-019-02295-7

    Article  Google Scholar 

  16. Yushkevich PA, Piven J, Hazlett HC, et al (2006) User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. Neuroimage 31:1116–1128. https://doi.org/10.1016/j.neuroimage.2006.01.015

    Article  PubMed  Google Scholar 

  17. van Griethuysen JJM, Fedorov A, Parmar C, et al (2017) Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res 77:e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dorogush AV, Ershov V, Gulin A (2018) CatBoost: gradient boosting with categorical features support. arXiv Prepr arXiv181011363

  19. Choi KJ, Jang JK, Lee SS, et al (2018) Development and Validation of a Deep Learning System for Staging Liver Fibrosis by Using Contrast Agent–enhanced CT Images in the Liver. Radiology 289:688–697. https://doi.org/10.1148/radiol.2018180763

    Article  PubMed  Google Scholar 

  20. Park HJ, Lee SS, Park B, et al (2019) Radiomics Analysis of Gadoxetic Acid–enhanced MRI for Staging Liver Fibrosis. Radiology 290:380–387. https://doi.org/10.1148/radiol.2018181197

    Article  PubMed  Google Scholar 

  21. Yasaka K, Akai H, Kunimatsu A, et al (2017) Liver Fibrosis: Deep Convolutional Neural Network for Staging by Using Gadoxetic Acid–enhanced Hepatobiliary Phase MR Images. Radiology 000:171928. https://doi.org/10.1148/radiol.2017171928

    Article  Google Scholar 

  22. Campana L, Iredale J (2017) Regression of Liver Fibrosis. Semin Liver Dis 37:001–010. https://doi.org/https://doi.org/10.1055/s-0036-1597816

    Article  Google Scholar 

  23. Smith AD, Branch CR, Zand K, et al (2016) Liver Surface Nodularity Quantification from Routine CT Images as a Biomarker for Detection and Evaluation of Cirrhosis. Radiology 280:771–81. https://doi.org/10.1148/radiol.2016151542

    Article  PubMed  Google Scholar 

  24. Lefebvre T, Wartelle-Bladou C, Wong P, et al (2019) Prospective comparison of transient, point shear wave, and magnetic resonance elastography for staging liver fibrosis. Eur Radiol 29:6477–6488. https://doi.org/10.1007/s00330-019-06331-4

    Article  PubMed  Google Scholar 

  25. Imajo K, Kessoku T, Honda Y, et al (2016) Magnetic Resonance Imaging More Accurately Classifies Steatosis and Fibrosis in Patients With Nonalcoholic Fatty Liver Disease Than Transient Elastography. Gastroenterology 150:626-637.e7. https://doi.org/10.1053/j.gastro.2015.11.048

    Article  PubMed  Google Scholar 

  26. Srinivasa Babu A, Wells ML, Teytelboym OM, et al (2016) Elastography in Chronic Liver Disease: Modalities, Techniques, Limitations, and Future Directions. RadioGraphics 36:1987–2006. https://doi.org/10.1148/rg.2016160042

    Article  PubMed  Google Scholar 

  27. Hirooka M, Koizumi Y, Hiasa Y, et al (2011) Hepatic Elasticity in Patients With Ascites: Evaluation With Real-Time Tissue Elastography. Am J Roentgenol 196:W766–W771. https://doi.org/10.2214/AJR.10.4867

    Article  Google Scholar 

  28. Almpanis Z, Demonakou M, Tiniakos D (2016) Evaluation of liver fibrosis: “Something old, something new….” Ann Gastroenterol 29:445–453. https://doi.org/10.20524/aog.2016.0046

Download references

Funding

This work supported by the Opening Research Fund of Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation (Grant Number: 201905010003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Lin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, E., Long, W., Wu, J. et al. Predicting the stages of liver fibrosis with multiphase CT radiomics based on volumetric features. Abdom Radiol 46, 3866–3876 (2021). https://doi.org/10.1007/s00261-021-03051-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-021-03051-6

Keywords

Navigation