Skip to main content

Advertisement

Log in

S100A4 overexpression in pancreatic ductal adenocarcinoma: imaging biomarkers from whole-tumor evaluation with MRI and texture analysis

  • Pancreas
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Objective

To investigate the relationship between imaging findings and S100A4 overexpression in pancreatic ductal adenocarcinoma (PDAC) and to determine imaging biomarkers of S100A4 overexpression from whole-tumor evaluation with MRI and texture analysis.

Methods

A total of 60 patients with pathologically confirmed PDAC were included in the study. All patients underwent preoperative abdominal contrast-enhanced MRI examination with Magnetom Aera (Siemens Healthcare, Germany, 1.5 T) at our institute. Whole-tumor evaluation including texture analysis was performed. Sections of specimens were reviewed, and the S100A4 expression status was quantitatively evaluated. Univariate and multivariate logistic regression analyses were conducted to find imaging biomarkers that could predict S100A4 overexpression.

Results

Twenty-four tumors (40.0%) had negative results for S100A4 overexpression, and 36 tumors (60.0%) exhibited overexpression. After univariate and multivariate analysis, distal pancreatic duct dilatation, T1WI_10th percentile and the enhancement rate difference between delayed phase (DP) and portal venous phase (PVP) were identified to predict S100A4 overexpression in PDAC independently (p = 0.009, 0.012 and 0.044), with odds ratios (ORs) of 0.102, 0.139 and 4.645, respectively. The area under the ROC curve (AUC) values were 0.715, 0.707 and 0.691. The AUC value of the proposed model was 0.877 with a sensitivity of 80.6% and specificity of 75.0%.

Conclusion

A model including distal pancreatic duct dilatation, T1WI_10th percentile and the enhancement rate difference between the DP and PVP could predict S100A4 overexpression in PDAC as imaging biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in the article.

Code availability

Not applicable.

References

  1. Kleeff J, Korc M, Apte M, et al (2016) Pancreatic cancer. Nat Rev Dis Primers 21:16022. https://doi.org/10.1038/nrdp.2016.22

    Article  Google Scholar 

  2. Rahib L, Smith BD, Aizenberg R, et al (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74:2913–2921. https://doi.org/10.1158/0008-5472.CAN-14-0155

    Article  CAS  PubMed  Google Scholar 

  3. Tempero M, Malafa M, Al-Hawary M, et al (2020) Pancreatic Adenocarcinoma, Version 1.2020, NCCN Clinical Practice Guidelines in Oncology. National Comprehensive Cancer Network. http://www.nccn.org/.  Accessed March 27 2020

  4. Tsai S, Erickson BA, Dua K, et al (2016) Evolution of the Management of Resectable Pancreatic Cancer. J Oncol Pract 12:772–778. https://doi.org/10.1200/JOP.2016.015818

    Article  PubMed  Google Scholar 

  5. Oettle H, Post S, Neuhaus P, et al (2007) Adjuvant chemotherapy with gemcitabine vs observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 297:267–277. https://doi.org/10.1001/jama.297.3.267

    Article  CAS  PubMed  Google Scholar 

  6. Dreyer SB, Pinese M, Jamieson NB, et al (2020) Precision Oncology in Surgery: Patient Selection for Operable Pancreatic Cancer. Ann Surg 272:366–376. https://doi.org/10.1097/SLA.0000000000003143

    Article  Google Scholar 

  7. Petrushnko W, Gundara JS, De Reuver PR, et al (2016) Systematic review of peri-operative prognostic biomarkers in pancreatic ductal adenocarcinoma. HPB (Oxford) 18:652–663. https://doi.org/10.1016/j.hpb.2016.05.004

    Article  Google Scholar 

  8. Salama I, Malone PS, Mihaimeed F, et al (2008) A review of the S100 proteins in cancer. Eur J Surg Oncol 34:357–364. https://doi.org/10.1016/j.ejso.2007.04.009

    Article  CAS  PubMed  Google Scholar 

  9. Helfman DM, Kim EJ, Lukanidin E, et al (2005) The metastasis associated protein S100A4: role in tumour progression and metastasis. Br J Cancer 92:1955–1958. https://doi.org/10.1038/sj.bjc.6602613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee SH, Kim H, Hwang JH, et al (2014) CD24 and S100A4 expression in resectable pancreatic cancers with earlier disease recurrence and poor survival. Pancreas 43:380–388. https://doi.org/10.1097/MPA.0000000000000097

    Article  CAS  PubMed  Google Scholar 

  11. Xu X, Su B, Xie C, et al (2014) Sonic hedgehog-Gli1 signaling pathway regulates the epithelial mesenchymal transition (EMT) by mediating a new target gene, S100A4, in pancreatic cancer cells. PLoS One 9:e96441. https://doi.org/10.1371/journal.pone.0096441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yamada S, Fuchs BC, Fujii T, et al (2013) Epithelial-to-mesenchymal transition predicts prognosis of pancreatic cancer. Surgery 154:946–954. https://doi.org/10.1016/j.surg.2013.05.004

    Article  PubMed  Google Scholar 

  13. Tsukamoto N, Egawa S, Akada M, et al (2013) The expression of S100A4 in human pancreatic cancer is associated with invasion. Pancreas 42:1027–1033. https://doi.org/10.1097/MPA.0b013e31828804e7

    Article  CAS  PubMed  Google Scholar 

  14. Rosty C, Ueki T, Argani P, et al (2002) Overexpression of S100A4 in pancreatic ductal adenocarcinomas is associated with poor differentiation and DNA hypomethylation. Am J Pathol 160:45–50. https://doi.org/10.1016/S0002-9440(10)64347-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou Y, Li Z, Ding Y, et al (2018) Overexpression of S100A4 protein may be associated with the development and progression of pancreatic cancer. J Cancer Res Ther 14:S159–S166. https://doi.org/10.4103/0973-1482.172582

    Article  CAS  PubMed  Google Scholar 

  16. Ma G, Sun Y, Fu S (2015) Evaluation of S100A4 mRNA in EUS-FNA specimens for the assessment of chemosensitivity to gemcitabine from patients with unresectable pancreatic cancer. Int J Clin Exp Pathol 8:13284–13288

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Mahon PC, Baril P, Bhakta V, Chelala C, et al (2007) S100A4 contributes to the suppression of BNIP3 expression, chemoresistance, and inhibition of apoptosis in pancreatic cancer. Cancer Res 67:6786–6795. https://doi.org/10.1158/0008-5472.CAN-07-0440

    Article  CAS  PubMed  Google Scholar 

  18. Huang S, Zheng J, Huang Y, et al (2016) Impact of S100A4 Expression on Clinicopathological Characteristics and Prognosis in Pancreatic Cancer: A Meta-Analysis. Dis Markers 2016:8137378. https://doi.org/10.1155/2016/8137378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kalogeraki A, Papadakis GZ, Tamiolakis D, et al (2016) EUS - Fine- Needle Aspiration Biopsy (FNAB) in the Diagnosis of Pancreatic Adenocarcinoma: A Review. Rom J Intern Med 54:24–30. https://doi.org/10.1515/rjim-2016-0002

    Article  PubMed  Google Scholar 

  20. Bang JY, Hebert-Magee S, Navaneethan U, et al (2018) EUS-guided fine needle biopsy of pancreatic masses can yield true histology. Gut 67:2081–2084. https://doi.org/10.1136/gutjnl-2017-315154

    Article  CAS  PubMed  Google Scholar 

  21. Ganeshan B, Miles KA (2013) Quantifying tumour heterogeneity with CT. Cancer Imaging 13:140–149. https://doi.org/10.1102/1470-7330.2013.0015

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yip SS, Aerts HJ (2016) Applications and limitations of radiomics. Phys Med Biol 61:R150–66. https://doi.org/10.1088/0031-9155/61/13/R150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kulkarni NM, Hough DM, Tolat PP, et al (2018) Pancreatic adenocarcinoma: cross-sectional imaging techniques. Abdom Radiol (NY) 43:253–263. https://doi.org/10.1007/s00261-017-1380-4

    Article  Google Scholar 

  24. Lubner MG, Smith AD, Sandrasegaran K, et al (2017) CT Texture Analysis: Definitions, Applications, Biologic Correlates, and Challenges. Radiographics 37:1483–1503. https://doi.org/10.1148/rg.2017170056

    Article  PubMed  Google Scholar 

  25. Vendrami CL, Velichko YS, Miller FH, et al (2018) Differentiation of Papillary Renal Cell Carcinoma Subtypes on MRI: Qualitative and Texture Analysis. AJR Am J Roentgenol 211:1234–1245. https://doi.org/10.2214/AJR.17.19213

    Article  PubMed  Google Scholar 

  26. Gillies RJ, Kinahan PE, Hricak H (2016) Radiomics: Images Are More than Pictures, They Are Data. Radiology 278:563–577. https://doi.org/10.1148/radiol.2015151169

    Article  PubMed  Google Scholar 

  27. Hanania AN, Bantis LE, Feng Z, et al (2016) Quantitative imaging to evaluate malignant potential of IPMNs. Oncotarget 7:85776–85784. https://doi.org/10.18632/oncotarget.11769

  28. van Griethuysen JJM, Fedorov A, Parmar C, et al (2017) Computational Radiomics System to Decode the Radiographic Phenotype. Cancer Res. 77:e104–e107. https://doi.org/10.1158/0008-5472.CAN-17-0339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nahm CB, Turchini J, Jamieson N, et al (2019) Biomarker panel predicts survival after resection in pancreatic ductal adenocarcinoma: A multi-institutional cohort study. Eur J Surg Oncol 45:218–224. https://doi.org/10.1016/j.ejso.2018.10.050

    Article  PubMed  Google Scholar 

  30. Tabata T, Tsukamoto N, Fooladi AA, et al (2009) RNA interference targeting against S100A4 suppresses cell growth and motility and induces apoptosis in human pancreatic cancer cells. Biochem Biophys Res Commun 390:475–480. https://doi.org/10.1016/j.bbrc.2009.09.096

    Article  CAS  PubMed  Google Scholar 

  31. Cuneo KC, Chenevert TL, Ben-Josef E, et al (2014) A pilot study of diffusion-weighted MRI in patients undergoing neoadjuvant chemoradiation for pancreatic cancer. Transl Oncol 7:644–649. https://doi.org/10.1016/j.tranon.2014.07.005

    Article  PubMed  PubMed Central  Google Scholar 

  32. Neesse A, Algül H, Tuveson DA, et al (2015) Stromal biology and therapy in pancreatic cancer: a changing paradigm. Gut 64:1476–1484. https://doi.org/10.1136/gutjnl-2015-309304

    Article  CAS  PubMed  Google Scholar 

  33. Legrand L, Duchatelle V, Molinié V, et al (2015) Pancreatic adenocarcinoma: MRI conspicuity and pathologic correlations. Abdom Imaging 40:85–94. https://doi.org/10.1007/s00261-014-0196-8

    Article  PubMed  Google Scholar 

  34. Yun G, Kim YH, Lee YJ, et al (2018) Tumor heterogeneity of pancreas head cancer assessed by CT texture analysis: association with survival outcomes after curative resection. Sci Rep 8:7226. https://doi.org/10.1038/s41598-018-25627-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Eilaghi A, Baig S, Zhang Y, et al (2017) CT texture features are associated with overall survival in pancreatic ductal adenocarcinoma - a quantitative analysis. BMC Med Imaging 17:38. https://doi.org/10.1186/s12880-017-0209-5

    Article  PubMed  PubMed Central  Google Scholar 

  36. Cassinotto C, Chong J, Zogopoulos G, et al (2017) Resectable pancreatic adenocarcinoma: Role of CT quantitative imaging biomarkers for predicting pathology and patient outcomes. Eur J Radiol 90:152–158. https://doi.org/10.1016/j.ejrad.2017.02.033

    Article  PubMed  Google Scholar 

  37. Sandrasegaran K, Lin Y, Asare-Sawiri M, et al (2019) CT texture analysis of pancreatic cancer. Eur Radiol 29:1067–1073. https://doi.org/10.1007/s00330-018-5662-1

    Article  PubMed  Google Scholar 

  38. Ng F, Kozarski R, Ganeshan B, et al (2013) Assessment of tumor heterogeneity by CT texture analysis: can the largest cross-sectional area be used as an alternative to whole tumor analysis? Eur J Radiol 82:342–348. https://doi.org/10.1016/j.ejrad.2012.10.023

    Article  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Special Program of Clinical Research in Health Industry, Shanghai Municipal Health Commission (Grant Number 201840343).

Author information

Authors and Affiliations

Authors

Contributions

LL: Methodology, Imaging investigation, Writing: Original Draft, RL: Methodology, Pathology investigation, YD Imaging investigation, Data analysis, KL Imaging examination, LS Pathology examination, HZ Immunohistochemical Staining, YG Data analysis, Software support, MZ Conceptualization, Methodology, Writing: Review and Editing.

Corresponding author

Correspondence to Mengsu Zeng.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflict of interest.

Ethical approval

The Ethics Committee of Zhongshan Hospital, Fudan University approved this retrospective study (No. B2018-266).

Informed consent

Requirement for written informed consent was conditionally waived.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, L., Luo, R., Ding, Y. et al. S100A4 overexpression in pancreatic ductal adenocarcinoma: imaging biomarkers from whole-tumor evaluation with MRI and texture analysis. Abdom Radiol 46, 623–635 (2021). https://doi.org/10.1007/s00261-020-02676-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-020-02676-3

Keywords

Navigation