Skip to main content

Advertisement

Log in

Renal tumors with low signal intensities on T2-weighted MR image: radiologic-pathologic correlation

  • Pictorial Essay
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Accurate characterization of renal masses is essential for ensuring appropriate management. Low T2 signal intensity is a common feature of papillary renal cell carcinoma and fat-poor angiomyolipoma. Nonetheless, other types of renal cell carcinoma, oncocytoma, hemangioma, lymphoma, leiomyoma, and urothelial cell carcinoma also can show low signal intensities on T2-weighted imaging (T2WI). Histopathologic features that can lead to low T2 signal intensities in renal tumors include smooth muscle component, papillary architecture, a high nucleus-to-cytoplasm ratio, and hemorrhage. To establish an appropriate differential diagnosis for renal tumors on MRI, it is necessary to understand the relationship between the MR signal intensities and the histopathologic and morphologic features, in addition to contrast enhancement patterns and diffusion characteristics of the tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Pedrosa I, Sun MR, Spencer M, et al. (2008) MR imaging of renal masses: correlation with findings at surgery and pathologic analysis. Radiographics 28:985–1003

    Article  PubMed  Google Scholar 

  2. Choi HJ, Kim JK, Ahn H, et al. (2011) Value of T2-weighted MR imaging in differentiating low-fat renal angiomyolipomas from other renal tumors. Acta Radiol 52:349–353

    Article  PubMed  Google Scholar 

  3. Oliva MR, Glickman JN, Zou KH, et al. (2009) Renal cell carcinoma: T1 and T2 signal intensity characteristics of papillary and clear cell types correlated with pathology. AJR Am J Roentgenol 192:1524–1530

    Article  PubMed  Google Scholar 

  4. Schieda N, van der Pol CB, Moosavi B, et al. (2015) Intracellular lipid in papillary renal cell carcinoma (pRCC): T2 weighted (T2W) MRI and pathologic correlation. Eur Radiol 25:2134–2142

    Article  PubMed  Google Scholar 

  5. Chung MS, Choi HJ, Kim MH, Cho KS (2014) Comparison of T2-weighted MRI with and without fat suppression for differentiating renal angiomyolipomas without visible fat from other renal tumors. AJR Am J Roentgenol 202:765–771

    Article  PubMed  Google Scholar 

  6. Sasiwimonphan K, Takahashi N, Leibovich BC, et al. (2012) Small (<4 cm) renal mass: differentiation of angiomyolipoma without visible fat from renal cell carcinoma utilizing MR imaging. Radiology 263:160–168

    Article  PubMed  Google Scholar 

  7. Katabathina VS, Vikram R, Nagar AM, Tamboli P, Menias CO, Prasad SR (2010) Mesenchymal neoplasms of the kidney in adults: imaging spectrum with radiologic-pathologic correlation. Radiographics 30:1525–1540

    Article  PubMed  Google Scholar 

  8. Shinmoto H, Yuasa Y, Tanimoto A, et al. (1998) Small renal cell carcinoma: MRI with pathologic correlation. J Magn Reson Imaging 8:690–694

    Article  CAS  PubMed  Google Scholar 

  9. Roy C, Sauer B, Lindner V, et al. (2007) MR Imaging of papillary renal neoplasms: potential application for characterization of small renal masses. Eur Radiol 17:193–200

    Article  PubMed  Google Scholar 

  10. Lopez-Beltran A, Scarpelli M, Montironi R, Kirkali Z (2006) 2004 WHO classification of the renal tumors of the adults. Eur Urol 49:798–805

    Article  PubMed  Google Scholar 

  11. Eble JN, Sauter G, Epstein JI, Sesterhenn IA (2004) World Health Organization classification of tumors: pathology and genetics. Tumors of the urinary system and male genital organs. Lyon: IARC Press, pp 10–87

    Google Scholar 

  12. Yabuki T, Togami I, Kitagawa T, et al. (2003) MR imaging of renal cell carcinoma: associations among signal intensity, tumor enhancement, and pathologic findings. Acta Med Okayama 57:179–186

    PubMed  Google Scholar 

  13. Hindman N, Ngo L, Genega EM, et al. (2012) Angiomyolipoma with minimal fat: can it be differentiated from clear cell renal cell carcinoma by using standard MR techniques? Radiology 265:468–477

    Article  PubMed  PubMed Central  Google Scholar 

  14. Park JJ, Kim CK (2017) Small (<4 cm) renal tumors with predominantly low signal intensity on T2-weighted images: differentiation of minimal-fat angiomyolipoma from renal cell carcinoma. AJR Am J Roentgenol 208:124–130

    Article  PubMed  Google Scholar 

  15. Prasad SR, Surabhi VR, Menias CO, Raut AA, Chintapalli KN (2008) Benign renal neoplasms in adults: cross-sectional imaging findings. AJR Am J Roentgenol 190:158–164

    Article  PubMed  Google Scholar 

  16. Kim MH, Lee J, Cho G, et al. (2013) MDCT-based scoring system for differentiating angiomyolipoma with minimal fat from renal cell carcinoma. Acta Radiol 54:1201–1209

    Article  PubMed  Google Scholar 

  17. Vikram R, Ng CS, Tamboli P, et al. (2009) Papillary renal cell carcinoma: radiologic-pathologic correlation and spectrum of disease. Radiographics 29:741–754

    Article  PubMed  Google Scholar 

  18. Sung CK, Kim SH, Woo S, et al. (2016) Angiomyolipoma with minimal fat: differentiation of morphological and enhancement features from renal cell carcinoma at CT imaging. Acta Radiol 57:1114–1122

    Article  PubMed  Google Scholar 

  19. Ding Y, Zeng M, Rao S (2016) Comparison of biexponential and monoexponential model of diffusion-weighted imaging for distinguishing between common renal cell carcinoma and fat poor angiomyolipoma. Korean J Radiol 17:853–863

    Article  PubMed  PubMed Central  Google Scholar 

  20. Campbell N, Rosenkrantz AB, Pedrosa I (2014) MRI phenotype in renal cancer: is it clinically relevant? Top Magn Reson Imaging 23:95–115

    Article  PubMed  PubMed Central  Google Scholar 

  21. Cornelis F, Tricaud E, Lasserre AS, et al. (2014) Routinely performed multiparametric magnetic resonance imaging helps to differentiate common subtypes of renal tumours. Eur Radiol 24:1068–1080

    Article  CAS  PubMed  Google Scholar 

  22. Wang H, Cheng L, Zhang X, et al. (2010) Renal cell carcinoma: diffusion-weighted MR imaging for subtype differentiation at 3.0 T. Radiology 257:135–143

    Article  PubMed  Google Scholar 

  23. Caoili EM, Davenport MS (2014) Role of percutaneous needle biopsy for renal masses. Semin Intervent Radiol 31:20–26

    Article  PubMed  PubMed Central  Google Scholar 

  24. Jinzaki M, Silverman SG, Akita H, et al. (2014) Renal angiomyolipoma: a radiological classification and update on recent developments in diagnosis and management. Abdom Imaging 39:588–604

    Article  PubMed  PubMed Central  Google Scholar 

  25. Misra LK, Kim EE, Hazlewood CF, Todd LE, Elizondo-Riojas G (1990) Characterization of skeletal muscles by MR imaging and relaxation times. Physiol Chem Phys Med NMR 22:219–228

    CAS  PubMed  Google Scholar 

  26. Polak JF, Jolesz FA, Adams DF (1988) NMR of skeletal muscle: differences in relaxation parameters related to extracellular/intracellular fluid spaces. Invest Radiol 23:107–112

    Article  CAS  PubMed  Google Scholar 

  27. Rosenkrantz AB, Hindman N, Fitzgerald EF, et al. (2010) MRI features of renal oncocytoma and chromophobe renal cell carcinoma. AJR Am J Roentgenol 195:W421–427

    Article  PubMed  Google Scholar 

  28. Semelka RC, Kelekis NL, Burdeny DA, et al. (1996) Renal lymphoma: demonstration by MR imaging. AJR Am J Roentgenol 166:823–827

    Article  CAS  PubMed  Google Scholar 

  29. Pickhardt PJ, Lonergan GJ, Davis CJ, Jr., Kashitani N, Wagner BJ (2000) From the archives of the AFIP. Infiltrative renal lesions: radiologic-pathologic correlation. Radiographics 20:215–243

    Article  CAS  PubMed  Google Scholar 

  30. Hartman DS, David CJ, Jr., Goldman SM, Friedman AC, Fritzsche P (1982) Renal lymphoma: radiologic-pathologic correlation of 21 cases. Radiology 144:759–766

    Article  CAS  PubMed  Google Scholar 

  31. Vilanova JC, Barcelo J, Smirniotopoulos JG, et al. (2004) Hemangioma from head to toe: MR imaging with pathologic correlation. Radiographics 24:367–385

    Article  PubMed  Google Scholar 

  32. Steiner M, Quinlan D, Goldman SM, et al. (1990) Leiomyoma of the kidney: presentation of 4 new cases and the role of computerized tomography. J Urol 143:99–998

    Article  CAS  PubMed  Google Scholar 

  33. Kuroda N, Inoue Y, Taguchi T, et al. (2007) Renal leiomyoma: an immunohistochemical, ultrastructural and comparative genomic hybridization study. Histol Histopathol 22:883–888

    CAS  PubMed  Google Scholar 

  34. Vikram R, Sandler CM, Ng CS (2009) Imaging and staging of transitional cell carcinoma: part 2, upper urinary tract. AJR Am J Roentgenol 192:1488–1493

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deuk Jae Sung.

Ethics declarations

Funding

No funding was received for this study.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Statement of informed consent was not applicable since the manuscript  does not contain any patient data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Sung, D.J., Sim, K.C. et al. Renal tumors with low signal intensities on T2-weighted MR image: radiologic-pathologic correlation. Abdom Radiol 42, 2108–2118 (2017). https://doi.org/10.1007/s00261-017-1097-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-017-1097-4

Keywords

Navigation