Skip to main content

Advertisement

Log in

Texture analysis in radiology: Does the emperor have no clothes?

  • Commentary
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Texture analysis is more and more frequently used in radiology research. Is this a new technology, and if not, what has changed? Is texture analysis the great diagnostic and prognostic tool we have been searching for in radiology? This commentary answers these questions and places texture analysis into its proper perspective.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Tian F, Hayano K, Kambadakone AR, Sahani DV (2015) Response assessment to neoadjuvant therapy in soft tissue sarcomas: using CT texture analysis in comparison to tumor size, density, and perfusion. Abdom Imaging 40:1705–1712

    Article  PubMed  Google Scholar 

  2. Canellas R, Mehrkhani F, Patino M, Kambadakone A, Sahani D (2016) Characterization of portal vein thrombosis (neoplastic versus bland) on CT images using software-based texture analysis and thrombus density (Hounsfield units). AJR Am J Roentgenol . doi:10.2214/AJR.15.15928

    PubMed  Google Scholar 

  3. Schieda N, Thornhill RE, Al-Subhi M, et al. (2015) Diagnosis of sarcomatoid renal cell carcinoma with CT: evaluation by qualitative imaging features and texture analysis. AJR Am J Roentgenol 204:1013–1023

    Article  PubMed  Google Scholar 

  4. De Cecco CN, Ciolina M, Caruso D, et al. (2016) Performance of diffusion-weighted imaging, perfusion imaging, and texture analysis in predicting tumoral response to neoadjuvant chemoradiotherapy in rectal cancer patients studied with 3T MR: initial experience. Abdom Radiol (NY) . doi:10.1007/s00261-016-0733-8

    PubMed  Google Scholar 

  5. Takahashi N, Takeuchi M, Sasaguri K, et al. (2016) CT negative attenuation pixel distribution and texture analysis for detection of fat in small angiomyolipoma on unenhanced CT. Abdom Radiol (NY) 41:1142–1151

    Article  Google Scholar 

  6. Zhang GM, Sun H, Shi B, Jin ZY, Xue HD (2016) Quantitative CT texture analysis for evaluating histologic grade of urothelial carcinoma. Abdom Radiol (NY) . doi:10.1007/s00261-016-0897-2

    Google Scholar 

  7. Chappard D, Guggenbuhl P, Legrand E, Basle MF, Audran M (2005) Texture analysis of X-ray radiographs is correlated with bone histomorphometry. J Bone Miner Metab 23:24–29

    Article  PubMed  Google Scholar 

  8. Choi JY, Ro YM (2012) Multiresolution local binary pattern texture analysis combined with variable selection for application to false-positive reduction in computer-aided detection of breast masses on mammograms. Phys Med Biol 57:7029–7052

    Article  PubMed  Google Scholar 

  9. Chicklore S, Goh V, Siddique M, et al. (2013) Quantifying tumour heterogeneity in 18F-FDG PET/CT imaging by texture analysis. Eur J Nucl Med Mol Imaging 40:133–140

    Article  PubMed  Google Scholar 

  10. Dang M, Lysack JT, Wu T, et al. (2015) MRI texture analysis predicts p53 status in head and neck squamous cell carcinoma. AJNR Am J Neuroradiol 36:166–170

    Article  CAS  PubMed  Google Scholar 

  11. Alobaidli S, McQuaid S, South C, et al. (2014) The role of texture analysis in imaging as an outcome predictor and potential tool in radiotherapy treatment planning. Br J Radiol 87:20140369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhou W, Zhang L, Wang K, et al. (2016) Malignancy characterization of hepatocellular carcinomas based on texture analysis of contrast-enhanced MR images. J Magn Reson Imaging. doi:10.1002/jmri.25454

    Google Scholar 

  13. Ng F, Ganeshan B, Kozarski R, Miles KA, Goh V (2013) Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival. Radiology 266:177–184

    Article  PubMed  Google Scholar 

  14. Depeursinge A, Foncubierta-Rodriguez A, Van De Ville D, Muller H (2014) Three-dimensional solid texture analysis in biomedical imaging: review and opportunities. Med Image Anal 18:176–196

    Article  PubMed  Google Scholar 

  15. Aerts HJ, Velazquez ER, Leijenaar RT, et al. (2014) Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun 5:4006

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Szczypinski PM, Strzelecki M, Materka A, Klepaczko A (2009) MaZda–a software package for image texture analysis. Comput Methods Programs Biomed 94:66–76

    Article  PubMed  Google Scholar 

  17. 510(k) Premarket Notification for the medimaps group TBIS iNsight software. https://www.accessdata.fda.gov/cdrh_docs/pdf12/K121716.pdf. Accessed 29 Sep 2016

  18. 510(k) Premarket Notification for the AmCAD-UT Detection 2.0 software. https://www.accessdata.fda.gov/cdrh_docs/pdf12/K122536.pdf. Accessed 29 Sep 2016

  19. Tesar L, Shimizu A, Smutek D, Kobatake H, Nawano S (2008) Medical image analysis of 3D CT images based on extension of Haralick texture features. Comput Med Imaging Graph 32:513–520

    Article  PubMed  Google Scholar 

  20. Solomon J, Mileto A, Nelson RC, Roy Choudhury K, Samei E (2016) Quantitative features of liver lesions, lung nodules, and renal stones at multi-detector row CT examinations: dependency on radiation dose and reconstruction algorithm. Radiology 279:185–194

    Article  PubMed  Google Scholar 

  21. Guo Q, Shao J, Ruiz VF (2009) Characterization and classification of tumor lesions using computerized fractal-based texture analysis and support vector machines in digital mammograms. Int J Comput Assist Radiol Surg 4:11–25

    Article  PubMed  Google Scholar 

  22. Zheng Y, Keller BM, Ray S, et al. (2015) Parenchymal texture analysis in digital mammography: A fully automated pipeline for breast cancer risk assessment. Med Phys 42:4149–4160

    Article  PubMed  PubMed Central  Google Scholar 

  23. Yao JH, Li J, Summers RM (2009) Employing topographical height map in colonic polyp measurement and false positive reduction. Pattern Recognit 42:1029–1040

    Article  PubMed  PubMed Central  Google Scholar 

  24. Liu J, Wang S, Turkbey EB, et al. (2015) Computer-aided detection of renal calculi from noncontrast CT images using TV-flow and MSER features. Med Phys 42:144–153

    Article  PubMed  Google Scholar 

  25. Kwak JT, Xu S, Wood BJ, et al. (2015) Automated prostate cancer detection using T2-weighted and high-b-value diffusion-weighted magnetic resonance imaging. Med Phys 42:2368–2378

    Article  PubMed  PubMed Central  Google Scholar 

  26. Summers RM, Pusanik LM, Malley JD, Hoeg JM (1999) Fractal analysis of virtual endoscopy reconstructions. P Soc Photo-Opt Ins 3660:258–269

    Google Scholar 

  27. Ledley RS, Huang HK, Rotolo LS (1975) A texture analysis method in classification of coal workers’ pneumoconiosis. Comput Biol Med 5:53–67

    Article  CAS  PubMed  Google Scholar 

  28. Nappi JJ, Regge D, Yoshida H (2011) Probabilistic method for context-sensitive detection of polyps in CT colonography. Proc SPIE Int Soc Opt Eng . doi:10.1117/12.878207

    PubMed  PubMed Central  Google Scholar 

  29. Abe C, Kahn CE, Jr, Doi K, Katsuragawa S (1992) Computer-aided detection of diffuse liver disease in ultrasound images. Invest Radiol 27:71–77

    Article  CAS  PubMed  Google Scholar 

  30. Rampun A, Zheng L, Malcolm P, Tiddeman B, Zwiggelaar R (2016) Computer-aided detection of prostate cancer in T2-weighted MRI within the peripheral zone. Phys Med Biol 61:4796–4825

    Article  PubMed  Google Scholar 

  31. Chan HP, Sahiner B, Petrick N, et al. (1997) Computerized classification of malignant and benign microcalcifications on mammograms: texture analysis using an artificial neural network. Phys Med Biol 42:549–567

    Article  CAS  PubMed  Google Scholar 

  32. Petrick N, Chan HP, Wei D, et al. (1996) Automated detection of breast masses on mammograms using adaptive contrast enhancement and texture classification. Med Phys 23:1685–1696

    Article  CAS  PubMed  Google Scholar 

  33. Chen W, Giger ML, Li H, Bick U, Newstead GM (2007) Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images. Magn Reson Med 58:562–571

    Article  PubMed  Google Scholar 

  34. Xu JW, Suzuki K (2014) Max-AUC feature selection in computer-aided detection of polyps in CT colonography. IEEE J Biomed Health Inform 18:585–593

    Article  PubMed  PubMed Central  Google Scholar 

  35. Tourassi GD (1999) Journey toward computer-aided diagnosis: role of image texture analysis. Radiology 213:317–320

    Article  CAS  PubMed  Google Scholar 

  36. Greenspan H, van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an Exciting new technique. IEEE Trans Med Imaging 35:1153–1159

    Article  Google Scholar 

  37. Summers RM (2016) Progress in fully automated abdominal CT interpretation. AJR Am J Roentgenol 207:67–79

    Article  PubMed  PubMed Central  Google Scholar 

  38. Roth HR, Lu L, Liu J, et al. (2016) Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE TMI 35:1170–1181

    Google Scholar 

  39. Shin H-C, Roth HR, Gao M, et al. (2016) Deep convolutional neural networks for computer-aided detection: cnn architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35:1285–1298

    Article  PubMed  Google Scholar 

  40. Mackin D, Fave X, Zhang L, et al. (2015) Measuring computed tomography scanner variability of radiomics features. Invest Radiol 50:757–765

    Article  PubMed  PubMed Central  Google Scholar 

  41. Fave X, Cook M, Frederick A, et al. (2015) Preliminary investigation into sources of uncertainty in quantitative imaging features. Comput Med Imaging Graph 44:54–61

    Article  PubMed  Google Scholar 

  42. Fave X, Mackin D, Yang J, et al. (2015) Can radiomics features be reproducibly measured from CBCT images for patients with non-small cell lung cancer? Med Phys 42:6784–6797

    Article  PubMed  PubMed Central  Google Scholar 

  43. Halligan S, Taylor SA, Dehmeshki J et al. (2006) Computer-assisted detection for CT colonography: external validation. Clin Radiol 61:758–763; discussion 764–755

  44. Summers RM, Handwerker LR, Pickhardt PJ, et al. (2008) Performance of a previously validated CT colonography computer-aided detection system in a new patient population. Am J Roentgenol 191:168–174

    Article  Google Scholar 

Download references

Acknowledgments

I thank Berkman Sahiner, PhD, for critical review of the manuscript.

Disclaimers

No NIH endorsement of any product or company mentioned in this manuscript should be inferred. The opinions expressed herein are the author’s and do not necessarily represent those of NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ronald M. Summers.

Ethics declarations

Funding

This study was funded by the Intramural Research Program of the National Institutes of Health, Clinical Center.

Conflict of Interest

RMS receives patent royalties from iCAD Medical.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Summers, R.M. Texture analysis in radiology: Does the emperor have no clothes?. Abdom Radiol 42, 342–345 (2017). https://doi.org/10.1007/s00261-016-0950-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0950-1

Key words

Navigation