Skip to main content
Log in

Restriction spectrum imaging improves MRI-based prostate cancer detection

  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Purpose

To compare the diagnostic performance of restriction spectrum imaging (RSI), with that of conventional multi-parametric (MP) magnetic resonance imaging (MRI) for prostate cancer (PCa) detection in a blinded reader-based format.

Methods

Three readers independently evaluated 100 patients (67 with proven PCa) who underwent MP-MRI and RSI within 6 months of systematic biopsy (N = 67; 23 with targeting performed) or prostatectomy (N = 33). Imaging was performed at 3 Tesla using a phased-array coil. Readers used a five-point scale estimating the likelihood of PCa present in each prostate sextant. Evaluation was performed in two separate sessions, first using conventional MP-MRI alone then immediately with MP-MRI and RSI in the same session. Four weeks later, another scoring session used RSI and T2-weighted imaging (T2WI) without conventional diffusion-weighted or dynamic contrast-enhanced imaging. Reader interpretations were then compared to prostatectomy data or biopsy results. Receiver operating characteristic curves were performed, with area under the curve (AUC) used to compare across groups.

Results

MP-MRI with RSI achieved higher AUCs compared to MP-MRI alone for identifying high-grade (Gleason score greater than or equal to 4 + 3=7) PCa (0.78 vs. 0.70 at the sextant level; P < 0.001 and 0.85 vs. 0.79 at the hemigland level; P = 0.04). RSI and T2WI alone achieved AUCs similar to MP-MRI for high-grade PCa (0.71 vs. 0.70 at the sextant level). With hemigland analysis, high-grade disease results were similar when comparing RSI + T2WI with MP-MRI, although with greater AUCs compared to the sextant analysis (0.80 vs. 0.79).

Conclusion

Including RSI with MP-MRI improves PCa detection compared to MP-MRI alone, and RSI with T2WI achieves similar PCa detection as MP-MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. American Cancer Society (2013) Cancer facts and figures. Atlanta: American Cancer Society

    Google Scholar 

  2. Turkbey B, Pinto PA, Mani H, et al. (2010) Prostate cancer: value of multiparametric MR imaging at 3T for detection—histopathologic correlation. Radiology 255:89–99

    Article  PubMed  PubMed Central  Google Scholar 

  3. Isebaert S, Van den Bergh L, Haustermans K, et al. (2013) Multiparametric MRI for prostate cancer localization in correlation to whole-mount histopathology. J Magn Reson Imaging 37:1392–1401. doi:10.1002/jmri.23938

    Article  PubMed  Google Scholar 

  4. Siddiqui MM, Rais-Bahrami S, Turkbey B, et al. (2015) Comparison of MR/ultrasound fusion-guided biopsy with ultrasound-guided biopsy for the diagnosis of prostate cancer. JAMA 313:390–397. doi:10.1001/jama.2014.17942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siddiqui MM, Rais-Bahrami S, Truong H, et al. (2013) Magnetic resonance imaging/ultrasound-fusion biopsy significantly upgrades prostate cancer versus systematic 12-core transrectal ultrasound biopsy. Eur Urol 64:713–719. doi:10.1016/j.eururo.2013.05.059

    Article  PubMed  Google Scholar 

  6. Kitajima K, Kaji Y, Fukabori Y, et al. (2010) Prostate cancer detection with 3 T MRI: comparison of diffusion-weighted imaging and dynamic contrast-enhanced MRI in combination with T2-weighted imaging. J Magn Reson Imaging 31:625–631. doi:10.1002/jmri.22075

    Article  PubMed  Google Scholar 

  7. Donati OF, Jung SI, Vargas HA, et al. (2013) Multiparametric prostate MR imaging with T2-weighted, diffusion-weighted, and dynamic contrast-enhanced sequences: are all pulse sequences necessary to detect locally recurrent prostate cancer after radiation therapy? Radiology 268:440–450. doi:10.1148/radiol.13122149/-/DC1

    Article  PubMed  Google Scholar 

  8. Tan CH, Wei W, Johnson V, Kundra V (2012) Diffusion-weighted MRI in the detection of prostate cancer: meta-analysis. AJR Am J Roentgenol 199:822–829. doi:10.2214/AJR.11.7805

    Article  PubMed  PubMed Central  Google Scholar 

  9. Soylu FN, Peng Y, Jiang Y, et al. (2013) Seminal vesicle invasion in prostate cancer: evaluation by using multiparametric endorectal MR imaging. Radiology 267:797–806. doi:10.1148/radiol.13121319/-/DC1

    Article  PubMed  Google Scholar 

  10. Langer DL, van der Kwast TH, Evans AJ, et al. (2009) Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging 30:327–334. doi:10.1002/jmri.21824

    Article  PubMed  Google Scholar 

  11. Peng Y, Jiang Y, Yang C, et al. (2013) Quantitative analysis of multiparametric prostate MR images: differentiation between prostate cancer and normal tissue and correlation with Gleason score—a computer-aided diagnosis development study. Radiology 267:787–796

    Article  PubMed  Google Scholar 

  12. Peng Y, Jiang Y, Antic T, et al. (2014) Validation of quantitative analysis of multiparametric prostate MR images for prostate cancer detection and aggressiveness assessment: a cross-imager study. Radiology 271:461–471

    Article  PubMed  Google Scholar 

  13. Donato F, Costa DN, Yuan Q, et al. (2014) Geometric distortion in diffusion-weighted MR imaging of the prostate-contributing factors and strategies for improvement. Acad Radiol 21:817–823. doi:10.1016/j.acra.2014.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  14. White NS, Leergaard TB, D’Arceuil H, Bjaalie JG, Dale AM (2013) Probing tissue microstructure with restriction spectrum imaging: histological and theoretical validation. Hum Brain Mapp 34:327–346. doi:10.1002/hbm.21454

    Article  PubMed  PubMed Central  Google Scholar 

  15. White NS, McDonald CR, Farid N, et al. (2014) Diffusion-weighted imaging in cancer: physical foundations and applications of restriction spectrum imaging. Cancer Res 74:4638–4652. doi:10.1158/0008-5472.CAN-13-3534

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. White N, McDonald C, Farid N, et al. (2013) Improved conspicuity and delineation of high-grade primary and metastatic brain tumors using “restriction spectrum imaging”: quantitative comparison with high B-value DWI and ADC. AJNR Am J Neuroradiol 34:958–964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. McDonald C, White N, Farid N, et al. (2013) Recovery of white matter tracts in regions of peritumoral FLAIR hyperintensity with use of restriction spectrum imaging. AJNR Am J Neuroradiol 34:1157–1163. doi:10.3174/ajnr.A3372

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kothari P, White N, Farid N, et al. (2013) Longitudinal restriction spectrum imaging is resistant to pseudoresponse in patients with high-grade gliomas treated with bevacizumab. AJNR Am J Neuroradiol 34:1752–1757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Farid N, Almeida-Freitas DB, White NS, et al. (2013) Restriction-spectrum imaging of bevacizumab-related necrosis in a patient with GBM. Front Oncol 30:1–5. doi:10.3389/fonc.2013.00258

    Google Scholar 

  20. Rakow-Penner R, White N, Parsons J, et al. (2015) Novel technique for characterizing prostate cancer utilizing MRI restriction spectrum imaging: proof of principle and initial clinical experience with extraprostatic extension. Prostate Cancer Prostatic Dis 18:1–5. doi:10.1038/pcan.2014.50

    Article  Google Scholar 

  21. Liss MA, White NS, Parsons JK, et al. (2015) MRI-derived restriction spectrum imaging cellularity index is associated with high grade prostate cancer on radical prostatectomy specimens. Front Oncol 5:1–8. doi:10.3389/fonc.2015.00030

    Article  CAS  Google Scholar 

  22. Rakow-Penner RA, White NS, Margolis DJ, et al. (2015) Prostate diffusion imaging with distortion correction. Magn Reson Imaging 33:1178–1181. doi:10.1016/j.mri.2015.07.006

    Article  PubMed  Google Scholar 

  23. Holland D, Kuperman JM, Dale AM (2010) Efficient correction of inhomogeneous static magnetic field-induced distortion in echo planar imaging. Neuroimage 50:175–183. doi:10.1016/j.neuroimage.2009.11.044

    Article  PubMed  PubMed Central  Google Scholar 

  24. Vargas HA, Akin O, Shukla-Dave A, et al. (2012) Performance characteristics of MR imaging in the evaluation of clinically low-risk prostate cancer: a prospective study. Radiology 265:478–487

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moore CM, Kasivisvanathan V, Eggener S, et al. (2013) Standards of reporting for MRI-targeted biopsy studies (START) of the prostate: recommendations from an International Working Group. Eur Urol 64:544–552. doi:10.1016/j.eururo.2013.03.030

    Article  PubMed  Google Scholar 

  26. Obuchowski N (1997) Nonparametric analysis of clustered ROC curve data. Biometrics 53:567–578

    Article  CAS  PubMed  Google Scholar 

  27. Landis J, Koch G (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  CAS  PubMed  Google Scholar 

  28. Tamura C, Shinmoto H, Soga S, et al. (2014) Diffusion kurtosis imaging study of prostate cancer: preliminary findings. J Magn Reson Imaging 40:723–729. doi:10.1002/jmri.24379

    Article  PubMed  Google Scholar 

  29. Roethke MC, Kuder TA, Kuru TH, et al. (2015) Evaluation of diffusion kurtosis imaging versus standard diffusion imaging for detection and grading of peripheral zone prostate cancer. Investig Radiol 50:483–489

    Article  CAS  Google Scholar 

  30. Suo S, Chen X, Wu L, et al. (2014) Non-Gaussian water diffusion kurtosis imaging of prostate cancer. Magn Reson Imaging 32:421–427. doi:10.1016/j.mri.2014.01.015

    Article  PubMed  Google Scholar 

  31. Vargas HA, Akin O, Franiel T, et al. (2011) Diffusion-weighted endorectal MR imaging at 3 T for prostate cancer: tumor detection and assessment of aggressiveness. Radiology 259:775–784

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cohen MS, Hanley RS, Kurteva T, et al. (2008) Comparing the Gleason prostate biopsy and Gleason prostatectomy grading system: the Lahey Clinic Medical Center experience and an international meta-analysis. Eur Urol 54:371–381. doi:10.1016/j.eururo.2008.03.049

    Article  PubMed  Google Scholar 

  33. Kvåle R, Møller B, Wahlqvist R, et al. (2009) Concordance between Gleason scores of needle biopsies and radical prostatectomy specimens: a population-based study. BJU Int 103:1647–1654. doi:10.1111/j.1464-410X.2008.08255.x

    Article  PubMed  Google Scholar 

  34. Rajinikanth A, Manoharan M, Soloway CT, Civantos FJ, Soloway MS (2008) Trends in Gleason score: concordance between biopsy and prostatectomy over 15 years. Urology 72:177–182. doi:10.1016/j.urology.2007.10.022

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by NIH Grant R01EB000790, American Cancer Society, Institutional Research Grant Number 70-002, Department of Defense Prostate Cancer Research Program, Idea Development Award W81XWH-13-1-0391#PC120532, National Science Foundation Grant Number 1430082, and General Electric Investigator Initiated Research Award BOK92325.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David S. Karow.

Ethics declarations

Conflict of Interest

All authors declared that they have no conflict of interest.

Disclaimer

The views expressed in this presentation are those of the authors and do not necessarily reflect the official policy or position of the Department of the Navy, Department of Defense, or the United States Government. The authors are military service members. This work was prepared as part of official duties. Title 17 U.S.C. 105 provides that ‘Copyright protection under this title is not available for any work of the United States Government.’

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Funding

The authors were funded by R01EB000790, American Cancer Society, Institutional Research Grant Number 70-002; DoD, Prostate Cancer Research Program; Idea Development Award W81XWH-13-1-0391, #PC120532; National Science Foundation, Grant Number 1430082; UCSD Clinician Scientist Program; and General Electric, Investigator Initiated Research Award BOK92325.

Informed Consent

Signed informed consent was waived by our Institutional Review Board as RSI has been integrated into the standard prostate MRI workflow at our institution as a diffusion tensor imaging product sequence-based technique with multiple b values, anteroposterior/posteroanterior distortion correction, and unique post-processing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCammack, K.C., Schenker-Ahmed, N.M., White, N.S. et al. Restriction spectrum imaging improves MRI-based prostate cancer detection. Abdom Radiol 41, 946–953 (2016). https://doi.org/10.1007/s00261-016-0659-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0659-1

Keywords

Navigation