Skip to main content

Advertisement

Log in

Hepatobiliary agents and their role in LI-RADS

  • Pictorial Essay
  • Published:
Abdominal Imaging Aims and scope Submit manuscript

Abstract

The Liver Imaging Reporting and Data System (LI-RADS) was introduced with the goal of standardizing the diagnosis of hepatocellular carcinoma. The 2014 version of LI-RADS incorporates the use of hepatobiliary contrast agents (HBAs) into the diagnostic algorithm, including gadoxetate disodium and gadobenate dimeglumine. Three new ancillary features are introduced: hepatobiliary phase (HBP) hypointensity and HBP hypointense rim favor malignancy, while HBP isointensity favors benignity. HBP hyperintensity favors neither malignancy nor benignity. In this review, we describe how to use these new features as well as numerous pitfalls associated with the use ofHBAs, including hemangiomas, cholangiocarcinomas, and focal confluent fibrosis. Importantly, findings on the HBP are not included as major criteria and therefore the criteria for the diagnosis of LI-RADS 5 observations remain unchanged, and so congruence with the Organ Procurement Transplant Network system remains intact. Additionally, we review how the major features in LI-RADS, arterial phase hyperenhancement, threshold growth, and washout and capsule appearance, may be affected with HBAs. Notably with HBAs, hypointensity on the delayed phase, termed the transitional phase, does not qualify as washout appearance due to the possibility of early parenchymal enhancement. It is hoped that the incorporation of HBAs into LI-RADS will help create consistency when interpreting HBA enhanced MRIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. American College of Radiology (2013) Liver imaging reporting and data system (LI-RADS). American College of Radiology, Washington, DC. http://www.acr.org/Quality-Safety/Resources/LIRADS. Accessed 25 May 2014

  2. Bashir MR, Breault SR, Braun R, Do RK, et al. (2014) Optimal timing and diagnostic adequacy of hepatocyte phase imaging with gadoxetate-enhanced liver MRI. Acad Radiol 21(6):726–732

    Article  PubMed  Google Scholar 

  3. Tajima T, Takao H, Akai H, Kiryu S, et al. (2010) Relationship between liver function and liver signal intensity in hepatobiliary phase of gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid-enhanced magnetic resonance imaging. J Comput Assist Tomogr 34(3):362–366

    Article  PubMed  Google Scholar 

  4. Tamada T, Ito K, Higaki A, Yoshida K, et al. (2011) Gd-EOB-DTPA-enhanced MR imaging: evaluation of hepatic enhancement effects in normal and cirrhotic livers. Eur J Radiol 80(3):e311–e316

    Article  PubMed  Google Scholar 

  5. Motosugi U, Ichikawa T, Sou H, Sano K, et al. (2009) Liver parenchymal enhancement of hepatocyte-phase images in Gd-EOB-DTPA-enhanced MR imaging: which biological markers of the liver function affect the enhancement? J Magn Reson Imaging 30(5):1042–1046

    Article  PubMed  Google Scholar 

  6. Lee NK, Kim S, Kim GH, Heo J, et al. (2012) Significance of the “delayed hyperintense portal vein sign” in the hepatobiliary phase MRI obtained with Gd-EOB-DTPA. J Magn Reson Imaging 36(3):678–685

    Article  PubMed  Google Scholar 

  7. Kim JY, Lee SS, Byun JH, Kim SY, et al. (2013) Biologic factors affecting HCC conspicuity in hepatobiliary phase imaging with liver-specific contrast agents. Am J Roentgenol 201(2):322–331

    Article  Google Scholar 

  8. Kim H, Kim M-J, Park M-S, Cha S-W, et al. (2010) Potential conditions causing impairment of selective hepatobiliary enhancement of gadobenate dimeglumine-enhanced delayed magnetic resonance imaging. J Comput Assist Tomogr 34(1):113–120

    Article  PubMed  Google Scholar 

  9. Chernyak V, Kim J, Rozenblit AM, Mazzoriol F, et al. (2011) Hepatic enhancement during the hepatobiliary phase after gadoxetate disodium administration in patients with chronic liver disease: the role of laboratory factors. J Magn Reson Imaging 34(2):301–309

    Article  PubMed  Google Scholar 

  10. Wald C, Russo MW, Heimbach JK, Hussain HK, et al. (2013) New OPTN/UNOS policy for liver transplant allocation: standardization of liver imaging, diagnosis, classification, and reporting of hepatocellular carcinoma. Radiology 266(2):376–382

    Article  PubMed  Google Scholar 

  11. Mori K, Yoshioka H, Takahashi N, Yamaguchi M, et al. (2005) Triple arterial phase dynamic MRI with sensitivity encoding for hypervascular hepatocellular carcinoma: comparison of the diagnostic accuracy among the early, middle, late, and whole triple arterial phase imaging. Am J Roentgenol 184(1):63–69

    Article  Google Scholar 

  12. Hope TA, Saranathan M, Petkovska I, Hargreaves BA, et al. (2013) Improvement of gadoxetate arterial phase capture with a high spatio-temporal resolution multiphase three-dimensional SPGR-dixon sequence. J Magn Reson Imaging 38:938–945

    Article  PubMed  Google Scholar 

  13. Zech CJ, Vos B, Nordell A, Urich M, et al. (2009) Vascular enhancement in early dynamic liver MR imaging in an animal model: comparison of two injection regimen and two different doses Gd-EOB-DTPA (gadoxetic acid) with standard Gd-DTPA. Invest Radiol 44(6):305–310

    Article  CAS  PubMed  Google Scholar 

  14. Tamada T, Ito K, Yoshida K, Kanki A, et al. (2011) Comparison of three different injection methods for arterial phase of Gd-EOB-DTPA enhanced MR imaging of the liver. Eur J Radiol 80(3):e284–e288

    Article  PubMed  Google Scholar 

  15. Motosugi U, Ichikawa T, Sano K, Sou H, et al. (2011) Double-dose gadoxetic acid-enhanced magnetic resonance imaging in patients with chronic liver disease. Invest Radiol 46(2):141–145

    Article  CAS  PubMed  Google Scholar 

  16. Motosugi U, Ichikawa T, Sou H, Sano K, et al. (2009) Dilution method of gadolinium ethoxybenzyl diethylenetriaminepentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI). J Magn Reson Imaging 30(4):849–854

    Article  PubMed  Google Scholar 

  17. Davenport MS, Viglianti BL, Al-Hawary MM, Caoili EM, et al. (2013) Comparison of acute transient dyspnea after intravenous administration of gadoxetate disodium and gadobenate dimeglumine: effect on arterial phase image quality. Radiology 266(2):452–461

    Article  PubMed  Google Scholar 

  18. Doo KW, Lee CH, Choi JW, Lee J, et al. (2009) “Pseudo washout” sign in high-flow hepatic hemangioma on gadoxetic acid contrast-enhanced MRI mimicking hypervascular tumor. Am J Roentgenol 193(6):W490–W496

    Article  Google Scholar 

  19. Nakamura Y, Toyota N, Date S, Oda S, et al. (2011) Clinical significance of the transitional phase at gadoxetate disodium-enhanced hepatic MRI for the diagnosis of hepatocellular carcinoma: preliminary results. J Comput Assist Tomogr 35(6):723–727

    Article  PubMed  Google Scholar 

  20. Motosugi U, Ichikawa T, Sano K, Sou H, et al. (2011) Outcome of hypovascular hepatic nodules revealing no gadoxetic acid uptake in patients with chronic liver disease. J Magn Reson Imaging 34(1):88–94

    Article  PubMed  Google Scholar 

  21. Kumada T, Toyoda H, Tada T, Sone Y, et al. (2011) Evolution of hypointense hepatocellular nodules observed only in the hepatobiliary phase of gadoxetate disodium-enhanced MRI. Am J Roentgenol 197(1):58–63

    Article  Google Scholar 

  22. Suh YJ, Kim M-J, Choi J-Y, Park YN, et al. (2011) Differentiation of hepatic hyperintense lesions seen on gadoxetic acid-enhanced hepatobiliary phase MRI. Am J Roentgenol 197(1):W44–W52

    Article  Google Scholar 

  23. Park Y, Kim SH, Kim SH, Jeon YH, et al. (2010) Gadoxetic acid (Gd-EOB-DTPA)-enhanced MRI versus gadobenate dimeglumine (Gd-BOPTA)-enhanced MRI for preoperatively detecting hepatocellular carcinoma: an initial experience. Korean J Radiol 11(4):433–440

    Article  PubMed Central  PubMed  Google Scholar 

  24. UNOS (2013) OPTN policy 3.6: allocation of livers. UNOS. http://optn.transplant.hrsa.gov/PoliciesandBylaws2/policies/pdfs/policy_8.pdf. Accessed May 25 2014.

  25. Gupta RT, Marin D, Boll DT, Husarik DB, et al. (2012) Hepatic hemangiomas: difference in enhancement pattern on 3T MR imaging with gadobenate dimeglumine versus gadoxetate disodium. Eur J Radiol 81(10):2457–2462

    Article  PubMed  Google Scholar 

  26. Tamada T, Ito K, Yamamoto A, Sone T, et al. (2011) Hepatic hemangiomas: evaluation of enhancement patterns at dynamic MRI with gadoxetate disodium. Am J Roentgenol 196(4):824–830

    Article  Google Scholar 

  27. Péporté ARJ, Sommer WH, Nikolaou K, Reiser MF, et al. (2013) Imaging features of intrahepatic cholangiocarcinoma in Gd-EOB-DTPA-enhanced MRI. Eur J Radiol 82(3):e101–e106

    Article  PubMed  Google Scholar 

  28. Kang Y, Lee JM, Kim SH, Han JK, et al. (2012) Intrahepatic mass-forming cholangiocarcinoma: enhancement patterns on gadoxetic acid-enhanced MR images. Radiology 264(3):751–760

    Article  PubMed  Google Scholar 

  29. Kogita S, Imai Y, Okada M, Kim T, et al. (2010) Gd-EOB-DTPA-enhanced magnetic resonance images of hepatocellular carcinoma: correlation with histological grading and portal blood flow. Eur Radiol 20(10):2405–2413

    Article  PubMed  Google Scholar 

  30. Sano K, Ichikawa T, Motosugi U, Sou H, et al. (2011) Imaging study of early hepatocellular carcinoma: usefulness of gadoxetic acid-enhanced MR imaging. Radiology 261(3):834–844

    Article  PubMed  Google Scholar 

  31. Yeom SK, Byun JH, Kim HJ, Park SH, et al. (2013) Focal fat deposition at liver MRI with gadobenate dimeglumine and gadoxetic acid: quantitative and qualitative analysis. Magn Reson Imaging 31(6):911–917

    Article  CAS  PubMed  Google Scholar 

  32. Husarik DB, Gupta RT, Ringe KI, Boll DT, et al. (2011) Contrast enhanced liver MRI in patients with primary sclerosing cholangitis: inverse appearance of focal confluent fibrosis on delayed phase MR images with hepatocyte specific versus extracellular gadolinium based contrast agents. Acad Radiol 18(12):1549–1554

    Article  PubMed  Google Scholar 

  33. Park YS, Lee CH, Kim BH, Lee J, et al. (2013) Using Gd-EOB-DTPA-enhanced 3-T MRI for the differentiation of infiltrative hepatocellular carcinoma and focal confluent fibrosis in liver cirrhosis. Magn Reson Imaging 31(7):1137–1142

    Article  CAS  PubMed  Google Scholar 

  34. Sun H, Lee J, Shin C, Lee D, et al. (2010) Gadoxetic acid-enhanced magnetic resonance imaging for differentiating small hepatocellular carcinomas. Invest Radiol 45(2):96–103

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas A. Hope.

Additional information

Hepatobiliary Phase LI-RADS Workgroup are given in “Appendix” section.

Appendix: Hepatobiliary Phase LI-RADS Workgroup Members

Appendix: Hepatobiliary Phase LI-RADS Workgroup Members

Carlo Bartolozzi, Mustafa Bashir, Giuseppe Brancatelli, Victoria Chernyak, Jin-Young Choi, Kathryn Fowler, Masoom Haider, Jay Heiken (workgroup chair), Thomas Hope, Keyanoosh Hosseinzadeh, Hero Hussain, Kartik Jhaveri, Masayuki Kanematsu, Jeong Min Lee, John Leyendecker, Osamu Matsui, Don Mitchell, Elmar Merkle, Giovanni Morana, Takamichi Murakami, Scott Reeder, Jens Ricke, Alla Rozenblit, Wolfgang Schima, Claude Sirlin, Jaap Stoker, Janio Szklaruk, Christoph Zech.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hope, T.A., Fowler, K.J., Sirlin, C.B. et al. Hepatobiliary agents and their role in LI-RADS. Abdom Imaging 40, 613–625 (2015). https://doi.org/10.1007/s00261-014-0227-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-014-0227-5

Keywords

Navigation