Skip to main content

Advertisement

Log in

A hybrid radioactive and fluorescence approach is more than the sum of its parts; outcome of a phase II randomized sentinel node trial in prostate cancer patients

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

An Editorial to this article was published on 24 March 2023

Abstract

Objective

To determine the diagnostic accuracy of the hybrid tracer indocyanine green (ICG)-Technetium-99 m(99mTc)-nanocolloid compared to sequential tracers of 99mTc-nanocolloid and free-ICG in detecting tumor-positive lymph nodes (LN) during primary surgery in prostate cancer (PCa) patients.

Introduction

Image-guided surgery strategies can help visualize individual lymphatic drainage patterns and sentinel lymph nodes (SLNs) in PCa patients. For lymphatic mapping radioactive, fluorescent and hybrid tracers are being clinically exploited. In this prospective randomized phase II trial, we made a head-to-head comparison between ICG-99mTc-nanocolloid (hybrid group) and 99mTc-nanocolloid and subsequent free-ICG injection (sequential group).

Methods

PCa patients with a  >5% risk of lymphatic involvement according to the 2012 Briganti nomogram and planned for prostatectomy were included and randomized (1:1) between ultrasound-guided intraprostatic tracer administration of ICG-99mTc-nanocolloid (n = 69) or 99mTc-nanocolloid (n = 69) 5 h before surgery. Preoperative lymphoscintigraphy and SPECT/CT were performed to define the locations of the SLNs. Additionally, all participants in the sequential group received an injection of free-ICG at time of surgery. Subsequently, all (S)LNs were dissected using fluorescence guidance followed by an extended pelvic lymph node dissection (ePLND). The primary outcome was the total number of surgically removed (S)LNs and tumor-positive (S)LNs.

Results

The total number of surgically removed (S)LN packages was 701 and 733 in the hybrid and sequential groups, respectively (p = 0.727). The total number of fluorescent LNs retrieved was 310 and 665 nodes in the hybrid and sequential groups, respectively (p < 0.001). However, no statistically significant difference was observed in the corresponding number of tumor-positive nodes among the groups (44 vs. 33; p = 0.470). Consequently, the rate of tumor-positive fluorescent LNs was higher in the hybrid group (7.4%) compared to the sequential group (2.6%; p = 0.002), indicating an enhanced positive predictive value for the hybrid approach. There was no difference in complications within 90 days after surgery (p = 0.78).

Conclusions

The hybrid tracer ICG-99mTc-nanocolloid improved the positive predictive value for tumor-bearing LNs while minimizing the number of fluorescent nodes compared to the sequential tracer approach. Consequently, the hybrid tracer ICG-99mTc-nanocolloid enables the most reliable and minimal invasive method for LN staging in PCa patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Peek MC, Charalampoudis P, Anninga B, Baker R, Douek M. Blue dye for identification of sentinel nodes in breast cancer and malignant melanoma: a systematic review and meta-analysis. Future Oncol. 2017;13(5):455–67.

    Article  CAS  PubMed  Google Scholar 

  2. Valiveru RC, Agarwal G, Agrawal V, Gambhir S, Mayilvaganan S, Chand G, et al. Low-cost fluorescein as an alternative to radio-colloid for sentinel lymph node biopsy-a prospective validation study in early breast cancer. World J Surg. 2020;44(10):3417–22.

    Article  PubMed  Google Scholar 

  3. Guo J, Yang H, Wang S, Cao Y, Liu M, Xie F, et al. Comparison of sentinel lymph node biopsy guided by indocyanine green, blue dye, and their combination in breast cancer patients: a prospective cohort study. World J Surg Oncol. 2017;15(1):196.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Brouwer OR, van den Berg NS, Matheron HM, van der Poel HG, van Rhijn BW, Bex A, et al. A hybrid radioactive and fluorescent tracer for sentinel node biopsy in penile carcinoma as a potential replacement for blue dye. Eur Urol. 2014;65(3):600–9.

    Article  CAS  PubMed  Google Scholar 

  5. Papadia A, Gasparri ML, Buda A, Mueller MD. Sentinel lymph node mapping in endometrial cancer: comparison of fluorescence dye with traditional radiocolloid and blue. J Cancer Res Clin Oncol. 2017;143(10):2039–48.

    Article  CAS  PubMed  Google Scholar 

  6. Van Den Berg NS, Buckle T, Kleinjan GI, Klop WM, Horenblas S, Van Der Poel HG, et al. Hybrid tracers for sentinel node biopsy. The quarterly journal of nuclear medicine and molecular imaging : official publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the So. 2014;58(2):193–206.

  7. van der Poel HG, Buckle T, Brouwer OR, Valdes Olmos RA, van Leeuwen FW. Intraoperative laparoscopic fluorescence guidance to the sentinel lymph node in prostate cancer patients: clinical proof of concept of an integrated functional imaging approach using a multimodal tracer. Eur Urol. 2011;60(4):826–33.

    Article  PubMed  Google Scholar 

  8. van den Berg NS, Valdes-Olmos RA, van der Poel HG, van Leeuwen FW. Sentinel lymph node biopsy for prostate cancer: a hybrid approach. J Nucl Med Off Publ Soc Nucl Med. 2013;54(4):493–6.

    Google Scholar 

  9. Mok CW, Tan SM, Zheng Q, Shi L. Network meta-analysis of novel and conventional sentinel lymph node biopsy techniques in breast cancer. BJS Open. 2019;3(4):445–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Quartuccio N, Siracusa M, Pappalardo M, Arnone A, Arnone G. Sentinel node identification in melanoma: current clinical impact, new emerging SPECT radiotracers and technological advancements. An update of the last decade. Curr Radiopharm. 2020;13(1):32–41.

  11. Collarino A, Fuoco V, Garganese G, Pereira Arias-Bouda LM, Perotti G, Manca G, et al. Lymphoscintigraphy and sentinel lymph node biopsy in vulvar carcinoma: update from a European expert panel. Eur J Nucl Med Mol Imaging. 2020;47(5):1261–74.

    Article  CAS  PubMed  Google Scholar 

  12. Giammarile F, Bozkurt MF, Cibula D, Pahisa J, Oyen WJ, Paredes P, et al. The EANM clinical and technical guidelines for lymphoscintigraphy and sentinel node localization in gynaecological cancers. Eur J Nucl Med Mol Imaging. 2014;41(7):1463–77.

    Article  PubMed  Google Scholar 

  13. Wever L, de Vries HM, van der Poel H, van Leeuwen F, Horenblas S, Brouwer O. Minimally invasive evaluation of the clinically negative inguinal node in penile cancer: dynamic sentinel node biopsy. Urol Oncol. 2022;40(6):209–14.

    Article  PubMed  Google Scholar 

  14. Jewell EL, Huang JJ, Abu-Rustum NR, Gardner GJ, Brown CL, Sonoda Y, et al. Detection of sentinel lymph nodes in minimally invasive surgery using indocyanine green and near-infrared fluorescence imaging for uterine and cervical malignancies. Gynecol Oncol. 2014;133(2):274–7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Wawroschek F, Vogt H, Weckermann D, Wagner T, Harzmann R. The sentinel lymph node concept in prostate cancer - first results of gamma probe-guided sentinel lymph node identification. Eur Urol. 1999;36(6):595–600.

    Article  CAS  PubMed  Google Scholar 

  16. Jeschke S, Lusuardi L, Myatt A, Hruby S, Janetschek G. Lymph node pathway visualization in real time by laparoscopic radioisotope-and fluorescence-guided sentinel lymph node dissection in prostate cancer staging. European Urology, Supplements. 2012;11 (1):e1009-ea.

  17. Vermeeren L, Valdes Olmos RA, Meinhardt W, Bex A, Van Der Poel HG, Vogel WV, et al. Value of SPECT/CT for detection and anatomic localization of sentinel lymph nodes before laparoscopic sentinel node lymphadenectomy in prostate carcinoma. J Nucl Med. 2009;50(6):865–70.

    Article  PubMed  Google Scholar 

  18. Holl G, Dorn R, Wengenmair H, Weckermann D, Sciuk J. Validation of sentinel lymph node dissection in prostate cancer: experience in more than 2,000 patients. Eur J Nucl Med Mol Imaging. 2009;36(9):1377–82.

    Article  CAS  PubMed  Google Scholar 

  19. Van den Bergh L, Joniau S, Haustermans K, Deroose CM, Isebaert S, Oyen R, et al. Reliability of sentinel node procedure for lymph node staging in prostate cancer patients at high risk for lymph node involvement. Acta Oncol (Stockholm, Sweden). 2015;54(6):896–902.

    Article  Google Scholar 

  20. Brenot-Rossi I, Rossi D, Esterni B, Brunelle S, Chuto G, Bastide C. Radioguided sentinel lymph node dissection in patients with localised prostate carcinoma: influence of the dose of radiolabelled colloid to avoid failure of the procedure. Eur J Nucl Med Mol Imaging. 2008;35(1):32–8.

    Article  PubMed  Google Scholar 

  21. Meinhardt W, Valdes Olmos RA, Van Der Poel HG, Bex A, Horenblas S. Laparoscopic sentinel node dissection for prostate carcinoma: technical and anatomical observations. BJU Int. 2008;102(6):714–7.

    Article  PubMed  Google Scholar 

  22. Muck A, Langesberg C, Mugler M, Rahnenfuhrer J, Wullich B, Schafhauser W. Clinical outcome of patients with lymph node-positive prostate cancer following radical prostatectomy and extended sentinel lymph node dissection. Urol Int 2015; 94(3):296–306.

  23. Ponholzer A, Lamche M, Klitsch M, Kraischits N, Hiess M, Schenner M, et al. Sentinel lymphadenectomy compared to extended lymphadenectomy in men with prostate cancer undergoing prostatectomy. Anticancer Res. 2012;32(3):1033–6.

    PubMed  Google Scholar 

  24. Stanik M, Capak I, Macik D, Vasina J, Lzicarova E, Jarkovsky J, et al. Sentinel lymph node dissection combined with meticulous histology increases the detection rate of nodal metastases in prostate cancer. Int Urol Nephrol. 2014;46(8):1543–9.

    Article  PubMed  Google Scholar 

  25. Weckermann D, Dorn R, Holl G, Wagner T, Harzmann R. Limitations of radioguided surgery in high-risk prostate cancer. Eur Urol. 2007;51(6):1549–58.

    Article  PubMed  Google Scholar 

  26. Wit EM, Acar C, Grivas N, Yuan C, Horenblas S, Liedberg F, et al. Sentinel node procedure in prostate cancer: a systematic review to assess diagnostic accuracy. Eur Urol. 2016.

  27. Manny TB, Patel M, Hemal AK. Fluorescence-enhanced robotic radical prostatectomy using real-time lymphangiography and tissue marking with percutaneous injection of unconjugated indocyanine green: the initial clinical experience in 50 patients. Eur Urol. 2014;65(6):1162–8.

    Article  PubMed  Google Scholar 

  28. Jeschke S, Lusuardi L, Myatt A, Hruby S, Pirich C, Janetschek G. Visualisation of the lymph node pathway in real time by laparoscopic radioisotope- and fluorescence-guided sentinel lymph node dissection in prostate cancer staging. Urology. 2012;80(5):1080–7.

    Article  PubMed  Google Scholar 

  29. Hruby S, Englberger C, Lusuardi L, Schatz T, Kunit T, Abdel-Aal AM, et al. Fluorescence guided targeted pelvic lymph node dissection for intermediate and high risk prostate cancer. J Urol. 2015;194(2):357–63.

    Article  PubMed  Google Scholar 

  30. Yuen K, Miura T, Sakai I, Kiyosue A, Yamashita M. Intraoperative fluorescence imaging for detection of sentinel lymph nodes and lymphatic vessels during open prostatectomy using indocyanine green. J Urol. 2015;194(2):371–7.

    Article  PubMed  Google Scholar 

  31. Miki J, Yanagisawa T, Tsuzuki S, Mori K, Urabe F, Kayano S, et al. Anatomical localization and clinical impact of sentinel lymph nodes based on patterns of pelvic lymphatic drainage in clinically localized prostate cancer. Prostate. 2018;78(6):419–25.

    Article  CAS  PubMed  Google Scholar 

  32. Nguyen DP, Huber PM, Metzger TA, Genitsch V, Schudel HH, Thalmann GN. A specific mapping study using fluorescence sentinel lymph node detection in patients with intermediate- and high-risk prostate cancer undergoing extended pelvic lymph node dissection. Eur Urol. 2016;70(5):734–7.

    Article  PubMed  Google Scholar 

  33. Aoun F, Albisinni S, Zanaty M, Hassan T, Janetschek G, van Velthoven R. Indocyanine green fluorescence-guided sentinel lymph node identification in urologic cancers: a systematic review and meta-analysis. Minerva urologica e nefrologica = The Italian Journal of Urology and Nephrology. 2018;70(4):361–9.

  34. van Leeuwen AC, Buckle T, Bendle G, Vermeeren L, Valdes Olmos R, van de Poel HG, et al. Tracer-cocktail injections for combined pre- and intraoperative multimodal imaging of lymph nodes in a spontaneous mouse prostate tumor model. J Biomed Opt. 2011;16(1): 016004.

    Article  PubMed  Google Scholar 

  35. KleinJan GH, van den Berg NS, Brouwer OR, de Jong J, Acar C, Wit EM, et al. Optimisation of fluorescence guidance during robot-assisted laparoscopic sentinel node biopsy for prostate cancer. Eur Urol. 2014;66(6):991–8.

    Article  PubMed  Google Scholar 

  36. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240(2):205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Gharzai LA, Jiang R, Wallington D, Jones G, Birer S, Jairath N, et al. Intermediate clinical endpoints for surrogacy in localised prostate cancer: an aggregate meta-analysis. Lancet Oncol. 2021;22(3):402–10.

    Article  PubMed  Google Scholar 

  38. KleinJan GH, van den Berg NS, de Jong J, Wit EM, Thygessen H, Vegt E, et al. Multimodal hybrid imaging agents for sentinel node mapping as a means to (re)connect nuclear medicine to advances made in robot-assisted surgery. Eur J Nucl Med Mol Imaging. 2016;43(7):1278–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Brouwer OR, Buckle T, Vermeeren L, Klop WM, Balm AJ, van der Poel HG, et al. Comparing the hybrid fluorescent-radioactive tracer indocyanine green-99mTc-nanocolloid with 99mTc-nanocolloid for sentinel node identification: a validation study using lymphoscintigraphy and SPECT/CT. J Nucl Med Off Publ Soc Nucl Med. 2012;53(7):1034–40.

    CAS  Google Scholar 

  40. Luhrs O, Ekdahl L, Lonnerfors C, Geppert B, Persson J. Combining Indocyanine Green and Tc(99)-nanocolloid does not increase the detection rate of sentinel lymph nodes in early stage cervical cancer compared to Indocyanine Green alone. Gynecol Oncol. 2020;156(2):335–40.

    Article  CAS  PubMed  Google Scholar 

  41. Soergel P, Kirschke J, Klapdor R, Derlin T, Hillemanns P, Hertel H. Sentinel lymphadenectomy in cervical cancer using near infrared fluorescence from indocyanine green combined with technetium-99m-nanocolloid. Lasers Surg Med. 2018;50(10):994–1001.

    Article  PubMed  Google Scholar 

  42. Rundle S, Korompelis P, Ralte A, Bewick D, Ratnavelu N. A comparison of ICG-NIR with blue dye and technetium for the detection of sentinel lymph nodes in vulvar cancer. Eur J Surg Oncol. 2023; 49(2):481–485

  43. Azargoshasb S, Boekestijn I, Roestenberg M, KleinJan GH, van der Hage JA, van der Poel HG, et al. Quantifying the impact of signal-to-background ratios on surgical discrimination of fluorescent lesions. Mol Imaging Biol. 2022.

  44. Meershoek P, KleinJan GH, van Willigen DM, Bauwens KP, Spa SJ, van Beurden F, et al. Multi-wavelength fluorescence imaging with a da Vinci Firefly-a technical look behind the scenes. J Robot Surg. 2021;15(5):751–60.

    Article  PubMed  Google Scholar 

  45. KleinJan GH, Van Den Berg NS, Brouwer OR, Acar C, Wit EM, Vegt E, et al. Improving fluorescence-guided sentinel node detection during robot-assisted laparoscopic sentinel node biopsy for prostate cancer. Eur J Nucl Med Mol Imaging. 2014;41:S288.

    Google Scholar 

  46. Meershoek P, Buckle T, van Oosterom MN, KleinJan GH, van der Poel HG, van Leeuwen FWB. Can intraoperative fluorescence imaging identify all lesions while the road map created by preoperative nuclear imaging is masked? J Nucl Med Off Publ Soc Nucl Med. 2020;61(6):834–41.

    CAS  Google Scholar 

  47. Hensbergen AW, van Willigen DM, van Beurden F, van Leeuwen PJ, Buckle T, Schottelius M, et al. Image-guided surgery: are we getting the most out of small-molecule prostate-specific-membrane-antigen-targeted tracers? Bioconjug Chem. 2020;31(2):375–95.

    Article  CAS  PubMed  Google Scholar 

  48. Vidal-Sicart S, Valdes Olmos RA. Sentinel node approach in prostate cancer. Rev Esp Med Nucl Imagen Mol. 2015;34(6):358–71.

    CAS  PubMed  Google Scholar 

  49. Dell’Oglio P, Meershoek P, Maurer T, Wit EMK, van Leeuwen PJ, van der Poel HG, et al. A DROP-IN gamma probe for robot-assisted radioguided surgery of lymph nodes during radical prostatectomy. Eur Urol. 2021;79(1):124–32.

    Article  CAS  PubMed  Google Scholar 

  50. Brausi M, Hoskin P, Andritsch E, Banks I, Beishon M, Boyle H, et al. ECCO essential requirements for quality cancer care: prostate cancer. Crit Rev Oncol Hematol. 2020;148: 102861.

    Article  PubMed  Google Scholar 

  51. Wit EMK, van Beurden F, Kleinjan GH, Grivas N, de Korne CM, Buckle T, et al. The impact of drainage pathways on the detection of nodal metastases in prostate cancer: a phase II randomized comparison of intratumoral vs intraprostatic tracer injection for sentinel node detection. Eur J Nucl Med Mol Imaging. 2022;49(5):1743–53.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was partially supported by an ERC starting grant (2012–306890) and a NWO-TTW-VICI grant (TTW 16141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther M. K. Wit.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Genitourinary

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wit, E.M.K., KleinJan, G.H., Berrens, AC. et al. A hybrid radioactive and fluorescence approach is more than the sum of its parts; outcome of a phase II randomized sentinel node trial in prostate cancer patients. Eur J Nucl Med Mol Imaging 50, 2861–2871 (2023). https://doi.org/10.1007/s00259-023-06191-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-023-06191-7

Keywords

Navigation