Skip to main content
Log in

[68Ga]Ga-FAPI PET for the evaluation of digestive system tumors: systematic review and meta-analysis

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Digestive system tumors are a group of tumors with high incidence in the world nowadays. The assessment of digestive system tumor metastasis by conventional imaging seems to be unsatisfactory. [68Ga]Ga-FAPI, which has emerged in recent years, seems to be able to evaluate digestive system tumor metastasis. We aimed to summarize the current evidence of [68Ga]Ga-FAPI PET/CT or PET/MR for the assessment of primary tumors, lymph node metastases, and distant metastases in digestive system tumors. Besides, we also aimed to perform a meta-analysis of the sensitivity of [68Ga]Ga-FAPI PET diagnosis to discriminate between digestive system tumors, primary lesions, and non-primary lesions (lymph node metastases and distant metastases).

Materials and methods

PubMed, MEDLINE and Cochrane Library databases were searched from the beginning of the database build to August 12, 2022. All studies undergoing [68Ga]Ga-FAPI PET for the evaluation of digestive tumors were included in the screening and review. Screening and full text review was performed by 3 investigators and data extraction was performed by 2 investigators. Risk of bias was examined with the QUADAS-2 criteria. Diagnostic test meta-analysis was performed with a random-effects model.

Results

A total of 541 studies were retrieved. Finally, 22 studies were selected for the systematic review and 18 studies were included in the meta-analysis. In the 18 publications, a total of 524 patients with digestive system tumors, 459 primary tumor lesions of digestive system tumors, and 1921 metastatic lesions of digestive system tumors were included in the meta-analysis. Based on patients, the sensitivity of [68Ga]Ga-FAPI PET for the diagnosis of digestive system tumors was 0.98 (95% CI: 0.94–0.99). Based on lesions, the sensitivity of [68Ga]Ga-FAPI PET for the diagnostic evaluation of primary tumor lesions of the digestive system was 0.97 (95% CI: 0.93–0.99); the sensitivity of [68Ga]Ga-FAPI PET for the diagnostic evaluation of non-primary lesions (lymph node metastases and distant metastases) of the digestive system tumors was 0.94 (95% CI: 0.79–0.99).

Conclusion

[68Ga]Ga-FAPI PET has high accuracy and its sensitivity is at a high level for the diagnostic evaluation of digestive system tumors. Clinicians, nuclear medicine physicians, and radiologists may consider using [68Ga]Ga-FAPI PET/CT or PET/MR in the evaluation of primary tumors, lymph node metastases, and distant metastases in digestive system tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nagtegaal ID, Odze RD, Klimstra D, et al. The 2019 WHO classification of tumours of the digestive system. Histopathology. 2020;76(2):182–8.

    Article  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

    Article  Google Scholar 

  3. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  Google Scholar 

  4. Matsuno K, Ishihara R, Ohmori M, et al. Time trends in the incidence of esophageal adenocarcinoma, gastric adenocarcinoma, and superficial esophagogastric junction adenocarcinoma. J Gastroenterol. 2019;54(9):784–91.

    Article  CAS  Google Scholar 

  5. Arjmand MH, Moradi A, Rahimi HR, et al. Prognostic value of HIF-1α in digestive system malignancies: evidence from a systematic review and meta-analysis. Gastroenterol Hepatol Bed Bench. 2022;15(2):108–19.

    Google Scholar 

  6. Peng D, He J, Liu H, Cao J, Wang Y, Chen Y. FAPI PET/CT research progress in digestive system tumours. Dig Liver Dis. 2022;54(2):164–9.

    Article  CAS  Google Scholar 

  7. Bergholt MS, Zheng W, Lin K, et al. In vivo diagnosis of gastric cancer using Raman endoscopy and ant colony optimization techniques. Int J Cancer. 2011;128(11):2673–80.

    Article  CAS  Google Scholar 

  8. Ghweil AA, Osman HA, Hassan MH, et al. Validity of serum amyloid A and HMGB1 as biomarkers for early diagnosis of gastric cancer. Cancer Manag Res. 2020;12:117–26.

    Article  CAS  Google Scholar 

  9. Chen S, Li T, Zhao Q, Xiao B, Guo J. Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta. 2017;466:167–71.

    Article  CAS  Google Scholar 

  10. Xue H, Ge HY, Miao LY, Wang SM, Zhao B, Wang JR, Cui LG. Differential diagnosis of gastric cancer and gastritis: the role of contrast-enhanced ultrasound (CEUS). Abdom Radiol (NY). 2017;42(3):802–9.

    Article  Google Scholar 

  11. Skehan SJ, Issenman R, Mernagh J, Nahmias C, Jacobson K. 18F-fluorodeoxyglucose positron tomography in diagnosis of paediatric inflammatory bowel disease. Lancet. 1999;354(9181):836–7.

    Article  CAS  Google Scholar 

  12. Instrumentation in positron emission tomography. Council on Scientific Affairs. Report of the positron emission tomography panel. JAMA. 1988;259(10):1531-1536.

  13. Scharko AM, Perlman SB, Pyzalski RW, Graziano FM, Sosman J, Pauza CD. Whole-body positron emission tomography in patients with HIV-1 infection. Lancet. 2003;362(9388):959–61.

    Article  Google Scholar 

  14. Findlay M, Young H, Cunningham D, et al. Noninvasive monitoring of tumor metabolism using fluorodeoxyglucose and positron emission tomography in colorectal cancer liver metastases: correlation with tumor response to fluorouracil. J Clin Oncol. 1996;14(3):700–8.

    Article  CAS  Google Scholar 

  15. Sazon DA, Santiago SM, Soo Hoo GW, et al. Fluorodeoxyglucose-positron emission tomography in the detection and staging of lung cancer. Am J Respir Crit Care Med. 1996;153(1):417–21.

    Article  CAS  Google Scholar 

  16. Schirrmeister H, Guhlmann A, Kotzerke J, et al. Early detection and accurate description of extent of metastatic bone disease in breast cancer with fluoride ion and positron emission tomography. J Clin Oncol. 1999;17(8):2381–9.

    Article  CAS  Google Scholar 

  17. Subesinghe M, Bhuva S, Arumalla N, Cope A, D'Cruz D, Subesinghe S. 2-deoxy-2[18F]fluoro-D-glucose positron emission tomography-computed tomography in rheumatological diseases. Rheumatology (Oxford). 2022;61(5):1769–82.

    Article  CAS  Google Scholar 

  18. Bjerring OS, Fristrup CW, Pfeiffer P, Lundell L, Mortensen MB. Phase II randomized clinical trial of endosonography and PET/CT versus clinical assessment only for follow-up after surgery for upper gastrointestinal cancer (EUFURO study). Br J Surg. 2019;106(13):1761–8.

    Article  CAS  Google Scholar 

  19. Kauhanen S, Rinta-Kiikka I, Kemppainen J, et al. Accuracy of [18F]FDG PET/CT, multidetector CT, and MR imaging in the diagnosis of pancreatic cysts: a prospective single-center study. J Nucl Med. 2015;56(8):1163–8.

    Article  CAS  Google Scholar 

  20. Piessen G, Petyt G, Duhamel A, et al. Ineffectiveness of 18F-fluorodeoxyglucose positron emission tomography in the evaluation of tumor response after completion of neoadjuvant chemoradiation in esophageal cancer. Ann Surg. 2013;258(1):66–76.

  21. Yun M. Imaging of gastric cancer metabolism using 18 F-FDG PET/CT. J Gastric Cancer. 2014;14(1):1–6.

    Article  Google Scholar 

  22. Wu CX, Zhu ZH. Diagnosis and evaluation of gastric cancer by positron emission tomography. World J Gastroenterol. 2014;20(16):4574–85.

    Article  Google Scholar 

  23. Mukai K, Ishida Y, Okajima K, Isozaki H, Morimoto T, Nishiyama S. Usefulness of preoperative FDG-PET for detection of gastric cancer. Gastric Cancer. 2006;9(3):192–6.

    Article  Google Scholar 

  24. Stahl A, Ott K, Weber WA, et al. FDG PET imaging of locally advanced gastric carcinomas: correlation with endoscopic and histopathological findings. Eur J Nucl Med Mol Imaging. 2003;30(2):288–95.

    Article  CAS  Google Scholar 

  25. Rosenbaum SJ, Stergar H, Antoch G, Veit P, Bockisch A, Kühl H. Staging and follow-up of gastrointestinal tumors with PET/CT. Abdom Imaging. 2006;31(1):25–35.

    Article  CAS  Google Scholar 

  26. Koerber SA, Staudinger F, Kratochwil C, et al. The Role of (68)Ga-FAPI PET/CT for patients with malignancies of the lower gastrointestinal tract: first clinical experience. J Nucl Med. 2020;61(9):1331–6.

    Article  CAS  Google Scholar 

  27. Mezawa Y, Orimo A. Phenotypic heterogeneity, stability and plasticity in tumor-promoting carcinoma-associated fibroblasts. Febs j. 2022;289(9):2429–47.

    Article  CAS  Google Scholar 

  28. Kamali Zonouzi S, Pezeshki PS, Razi S, Rezaei N. Cancer-associated fibroblasts in colorectal cancer. Clin Transl Oncol. 2022;24(5):757–69.

    Article  CAS  Google Scholar 

  29. Giesel FL, Kratochwil C, Lindner T, et al. (68)Ga-FAPI PET/CT: biodistribution and preliminary dosimetry estimate of 2 DOTA-containing FAP-targeting agents in patients with various cancers. J Nucl Med. 2019;60(3):386–92.

    Article  CAS  Google Scholar 

  30. Byrling J, Sasor A, Nilsson J, Said Hilmersson K, Andersson R, Andersson B. Expression of fibroblast activation protein and the clinicopathological relevance in distal cholangiocarcinoma. Scand J Gastroenterol. 2020;55(1):82–9.

    Article  CAS  Google Scholar 

  31. Liu F, Qi L, Liu B, et al. Fibroblast activation protein overexpression and clinical implications in solid tumors: a meta-analysis. PLoS ONE. 2015;10(3):e0116683.

    Article  Google Scholar 

  32. Loktev A, Lindner T, Mier W, et al. A tumor-imaging method targeting cancer-associated fibroblasts. J Nucl Med. 2018;59(9):1423–9.

    Article  CAS  Google Scholar 

  33. Franco OE, Shaw AK, Strand DW, Hayward SW. Cancer associated fibroblasts in cancer pathogenesis. Semin Cell Dev Biol. 2010;21(1):33–9.

    Article  CAS  Google Scholar 

  34. Zhao L, Chen S, Chen S, et al. (68)Ga-fibroblast activation protein inhibitor PET/CT on gross tumour volume delineation for radiotherapy planning of oesophageal cancer. Radiother Oncol. 2021;158:55–61.

    Article  CAS  Google Scholar 

  35. Hamson EJ, Keane FM, Tholen S, Schilling O, Gorrell MD. Understanding fibroblast activation protein (FAP): substrates, activities, expression and targeting for cancer therapy. Proteomics Clin Appl. 2014;8(5-6):454–63.

    Article  CAS  Google Scholar 

  36. Lindner T, Loktev A, Altmann A, et al. Development of quinoline-based theranostic ligands for the targeting of fibroblast activation protein. J Nucl Med. 2018;59(9):1415–22.

    Article  CAS  Google Scholar 

  37. Loktev A, Lindner T, Burger EM, et al. Development of fibroblast activation protein-targeted radiotracers with improved tumor retention. J Nucl Med. 2019;60(10):1421–9.

    Article  CAS  Google Scholar 

  38. Ding F, Huang C, Liang C, Wang C, Liu J, Tang D. (68)Ga-FAPI-04 vs. (18)F-FDG in a longitudinal preclinical PET imaging of metastatic breast cancer. Eur J Nucl Med Mol Imaging. 2021;49(1):290–300.

    Article  CAS  Google Scholar 

  39. Qin C, Liu F, Huang J, et al. A head-to-head comparison of (68)Ga-DOTA-FAPI-04 and (18)F-FDG PET/MR in patients with nasopharyngeal carcinoma: a prospective study. Eur J Nucl Med Mol Imaging. 2021;48(10):3228–37.

    Article  CAS  Google Scholar 

  40. Kuten J, Levine C, Shamni O, et al. Head-to-head comparison of [(68)Ga]Ga-FAPI-04 and [(18)F]-FDG PET/CT in evaluating the extent of disease in gastric adenocarcinoma. Eur J Nucl Med Mol Imaging. 2022;49(2):743–50.

    Article  CAS  Google Scholar 

  41. Shi X, Xing H, Yang X, et al. Fibroblast imaging of hepatic carcinoma with (68)Ga-FAPI-04 PET/CT: a pilot study in patients with suspected hepatic nodules. Eur J Nucl Med Mol Imaging. 2021;48(1):196–203.

    Article  Google Scholar 

  42. Fu L, Huang S, Wu H, et al. Superiority of [68Ga]Ga-FAPI-04/[18F]FAPI-42 PET/CT to [18F]FDG PET/CT in delineating the primary tumor and peritoneal metastasis in initial gastric cancer. Eur Radiol. 2022;32(9):6281–90.

    Article  CAS  Google Scholar 

  43. McInnes MDF, Moher D, Thombs BD, et al. Preferred reporting items for a systematic review and meta-analysis of diagnostic test accuracy studies: the PRISMA-DTA Statement. JAMA. 2018;319(4):388–96.

    Article  Google Scholar 

  44. Whiting PF, Rutjes AW, Westwood ME, et al. QUADAS-2: a revised tool for the quality assessment of diagnostic accuracy studies. Ann Intern Med. 2011;155(8):529–36.

    Article  Google Scholar 

  45. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med. 2002;21(11):1539–58.

    Article  Google Scholar 

  46. von Hippel PT. The heterogeneity statistic I(2) can be biased in small meta-analyses. BMC Med Res Methodol. 2015;15:35.

    Article  Google Scholar 

  47. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ. 2003;327(7414):557–60.

    Article  Google Scholar 

  48. Deeks JJ, Macaskill P, Irwig L. The performance of tests of publication bias and other sample size effects in systematic reviews of diagnostic test accuracy was assessed. J Clin Epidemiol. 2005;58(9):882–93.

    Article  Google Scholar 

  49. Qin C, Shao F, Gai Y, et al. 68Ga-DOTA-FAPI-04 PET/MR in the evaluation of gastric carcinomas: comparison with [18F]FDG PET/CT. J Nucl Med. 2022;63(1):81–8.

    Article  CAS  Google Scholar 

  50. Shi X, Xing H, Yang X, et al. Comparison of PET imaging of activated fibroblasts and (18)F-FDG for diagnosis of primary hepatic tumours: a prospective pilot study. Eur J Nucl Med Mol Imaging. 2021;48(5):1593–603.

    Article  CAS  Google Scholar 

  51. Zhang Z, Jia G, Pan G, et al. Comparison of the diagnostic efficacy of (68) Ga-FAPI-04 PET/MR and (18)F-FDG PET/CT in patients with pancreatic cancer. Eur J Nucl Med Mol Imaging. 2022;49(8):2877–88.

    Article  CAS  Google Scholar 

  52. Hertle RW. A story of discovery and change: what we learned from studying nystagmus in infancy and childhood. J Binocul Vis Ocul Motil. 2022;72(3):113–30.

    Google Scholar 

  53. Kömek H, Can C, Kaplan İ, et al. Comparison of [68 Ga]Ga-DOTA-FAPI-04 PET/CT and [18F]FDG PET/CT in colorectal cancer. Eur J Nucl Med Mol Imaging. 2022;49(11):3898–909.

    Article  Google Scholar 

  54. Sollini M, Kirienko M, Gelardi F, Fiz F, Gozzi N, Chiti A. State-of-the-art of FAPI-PET imaging: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2021;48(13):4396–414.

    Article  Google Scholar 

  55. Kratochwil C, Flechsig P, Lindner T, et al. (68)Ga-FAPI PET/CT: tracer uptake in 28 different kinds of cancer. J Nucl Med. 2019;60(6):801–5.

    Article  CAS  Google Scholar 

  56. Lee JW, O JH, Choi M, Choi JY. Impact of F-18 fluorodeoxyglucose PET/CT and PET/MRI on initial staging and changes in management of pancreatic ductal adenocarcinoma: a systemic review and meta-analysis. Diagnostics (Basel). 2020;10(11):952.

    Article  Google Scholar 

  57. Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3(1):8.

    Article  Google Scholar 

  58. Serfling S, Zhi Y, Schirbel A, et al. Improved cancer detection in Waldeyer's tonsillar ring by (68)Ga-FAPI PET/CT imaging. Eur J Nucl Med Mol Imaging. 2021;48(4):1178–87.

    Article  CAS  Google Scholar 

  59. Röhrich M, Naumann P, Giesel FL, et al. Impact of (68)Ga-FAPI PET/CT imaging on the therapeutic management of primary and recurrent pancreatic ductal adenocarcinomas. J Nucl Med. 2021;62(6):779–86.

    Article  Google Scholar 

  60. Luo Y, Pan Q, Yang H, Peng L, Zhang W, Li F. Fibroblast activation protein-targeted PET/CT with (68)Ga-FAPI for imaging IgG4-related disease: comparison to (18)F-FDG PET/CT. J Nucl Med. 2021;62(2):266–71.

    Article  CAS  Google Scholar 

  61. Guo W, Pang Y, Yao L, et al. Imaging fibroblast activation protein in liver cancer: a single-center post hoc retrospective analysis to compare [(68)Ga]Ga-FAPI-04 PET/CT versus MRI and [(18)F]-FDG PET/CT. Eur J Nucl Med Mol Imaging. 2021;48(5):1604–17.

    Article  CAS  Google Scholar 

  62. Şahin E, Elboğa U, Çelen YZ, Sever ÖN, Çayırlı YB, Çimen U. Comparison of (68)Ga-DOTA-FAPI and (18)FDG PET/CT imaging modalities in the detection of liver metastases in patients with gastrointestinal system cancer. Eur J Radiol. 2021;142(109867).

  63. Ripps H, Pepperberg DR. Photoreceptor processes in visual adaptation. Neurosci Res Suppl. 1987;6:S87–105.

    Article  CAS  Google Scholar 

  64. Lin R, Lin Z, Chen Z, Zheng S, Zhang J, Zang J, Miao W. [68Ga]Ga-DOTA-FAPI-04 PET/CT in the evaluation of gastric cancer: comparison with [18F]FDG PET/CT. Eur J Nucl Med Mol Imaging. 2022;49(8):2960–71.

    Article  CAS  Google Scholar 

  65. Jiang D, Chen X, You Z, et al. Comparison of [(68) Ga]Ga-FAPI-04 and [(18)F]-FDG for the detection of primary and metastatic lesions in patients with gastric cancer: a bicentric retrospective study. Eur J Nucl Med Mol Imaging. 2022;49(2):732–42.

    Article  CAS  Google Scholar 

  66. Pang Y, Zhao L, Luo Z, et al. Comparison of (68)Ga-FAPI and (18)F-FDG uptake in gastric, duodenal, and colorectal cancers. Radiology. 2021;298(2):393–402.

    Article  Google Scholar 

  67. Esteves FP, Schuster DM, Halkar RK. Gastrointestinal tract malignancies and positron emission tomography: an overview. Semin Nucl Med. 2006;36(2):169–81.

    Article  Google Scholar 

  68. Akin EA, Qazi ZN, Osman M, Zeman RK. Clinical impact of FDG PET/CT in alimentary tract malignancies: an updated review. Abdom Radiol (NY). 2020;45(4):1018–35.

    Article  Google Scholar 

  69. Cui JX, Li T, Xi HQ, Wei B, Chen L. Evaluation of (18)F-FDG PET/CT in preoperative staging of gastric cancer: a meta-analysis. Zhonghua Wei Chang Wai Ke Za Zhi. 2013;16(5):418–24.

    Google Scholar 

  70. Zhang Z, Zheng B, Chen W, Xiong H, Jiang C. Accuracy of [18F]FDG PET/CT and CECT for primary staging and diagnosis of recurrent gastric cancer: a meta-analysis. Exp ther med. 2021;21(2):164.

    Article  CAS  Google Scholar 

  71. Roustaei H, Kiamanesh Z, Askari E, Sadeghi R, Aryana K, Treglia G. Could fibroblast activation protein (FAP)-specific radioligands be considered as pan-tumor agents? Contrast Media Mol Imaging. 2022;2022:3948873.

    Article  Google Scholar 

Download references

Funding

We acknowledge funding from the Gulin County People’s Hospital, Southwest Medical University Affiliated Hospital Science and Technology Strategic Cooperation Project (project number: 2022GLXNNYDFY05), and the Sichuan Medical Association Scientific Research Project (project number: S21005).

Author information

Authors and Affiliations

Authors

Contributions

Huang, Wu, Zhong, Lin, and Pang conceptualized the project; Li and Wu performed literature search; Han and Huang performed articles selection; He and Zhong collected relevant study data; Huang and Zhong performed analyses and prepared the figures; Wu interpreted the analysis results; Huang, Wu and Zhong drafted the paper; Chen, Lin, and Pang critically commented the paper. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Sheng Lin or Haowen Pang.

Ethics declarations

Ethics approval

This article does not contain any study with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Oncology - Digestive tract

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, D., Wu, J., Zhong, H. et al. [68Ga]Ga-FAPI PET for the evaluation of digestive system tumors: systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 50, 908–920 (2023). https://doi.org/10.1007/s00259-022-06021-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-06021-2

Keywords

Navigation