Skip to main content

Advertisement

Log in

Advances in aptamer-based nuclear imaging

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Aptamers are short oligonucleotides that bind to specific target molecules. They have been extensively explored in biomedical applications, including biosensing, medical imaging, and disease treatment. Their adjustable affinity for specific biomarkers stimulates more translational efforts, such as nuclear imaging of tumors in preclinical and clinical settings. In this review, we present recent advances of aptamer-based nuclear imaging and compare aptamer tracers with other biogenic probes in forms of peptides, nanobodies, monoclonal antibodies, and antibody fragments. Fundamental properties of aptamer-based radiotracers are highlighted and potential directions to improve aptamer’s imaging performance are discussed. Despite many translational obstacles to overcome, we envision aptamers to be a versatile tool for cancer nuclear imaging in the near future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim HJ, Park JY, Lee TS, Song IH, Cho YL, Chae JR, et al. PET imaging of HER2 expression with an 18F-fluoride labeled aptamer. PLoS ONE. 2019;14(1): e0211047. https://doi.org/10.1371/journal.pone.0211047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 1990;249(4968):505–10. https://doi.org/10.1126/science.2200121.

    Article  CAS  PubMed  Google Scholar 

  3. Stoltenburg R, Reinemann C, Strehlitz B. SELEX–a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng. 2007;24(4):381–403. https://doi.org/10.1016/j.bioeng.2007.06.001.

    Article  CAS  PubMed  Google Scholar 

  4. Odeh F, Nsairat H, Alshaer W, Ismail MA, Esawi E, Qaqish B et al. Aptamers chemistry: chemical modifications and conjugation strategies. Molecules. 2019;25(1). https://doi.org/10.3390/molecules25010003.

  5. Ni X, Castanares M, Mukherjee A, Lupold SE. Nucleic acid aptamers: clinical applications and promising new horizons. Curr Med Chem. 2011;18(27):4206–14. https://doi.org/10.2174/092986711797189600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kim JH, Marton J, Ametamey SM, Cumming P. A review of molecular imaging of glutamate receptors. Molecules. 2020;25(20). https://doi.org/10.3390/molecules25204749.

  7. Zhang X, Ding B, Qu C, Li H, Sun Y, Gai Y, et al. A thiopyrylium salt for PET/NIR-II tumor imaging and image-guided surgery. Mol Oncol. 2020;14(5):1089–100. https://doi.org/10.1002/1878-0261.12674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Farzin L, Shamsipur M, Moassesi ME, Sheibani S. Clinical aspects of radiolabeled aptamers in diagnostic nuclear medicine: a new class of targeted radiopharmaceuticals. Bioorg Med Chem. 2019;27(12):2282–91. https://doi.org/10.1016/j.bmc.2018.11.031.

    Article  CAS  PubMed  Google Scholar 

  9. Son H, Jang K, Lee H, Kim SE, Kang KW, Lee H. Use of molecular imaging in clinical drug development: a systematic review. Nucl Med Mol Imaging. 2019;53(3):208–15. https://doi.org/10.1007/s13139-019-00593-y.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Han J, Gao L, Wang J, Wang J. Application and development of aptamer in cancer: from clinical diagnosis to cancer therapy. J Cancer. 2020;11(23):6902–15. https://doi.org/10.7150/jca.49532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bakhtiari H, Palizban AA, Khanahmad H, Mofid MR. Aptamer-based approaches for in vitro molecular detection of cancer. Res Pharm Sci. 2020;15(2):107–22. https://doi.org/10.4103/1735-5362.283811.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Filippi L, Bagni O, Nervi C. Aptamer-based technology for radionuclide targeted imaging and therapy: a promising weapon against cancer. Expert Rev Med Devices. 2020;17(8):751–8. https://doi.org/10.1080/17434440.2020.1796633.

    Article  CAS  PubMed  Google Scholar 

  13. Ruiz Ciancio D, Vargas MR, Thiel WH, Bruno MA, Giangrande PH, Mestre MB. Aptamers as diagnostic tools in cancer. Pharmaceuticals (Basel). 2018;11(3). https://doi.org/10.3390/ph11030086.

  14. Liu C, Liu T, Zhang N, Liu Y, Li N, Du P, et al. (68)Ga-PSMA-617 PET/CT: a promising new technique for predicting risk stratification and metastatic risk of prostate cancer patients. Eur J Nucl Med Mol Imaging. 2018;45(11):1852–61. https://doi.org/10.1007/s00259-018-4037-9.

    Article  CAS  PubMed  Google Scholar 

  15. Langbein T, Weber WA, Eiber M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med. 2019;60(Suppl 2):13S-S19. https://doi.org/10.2967/jnumed.118.220566.

    Article  CAS  PubMed  Google Scholar 

  16. Hanahan D. Hallmarks of cancer: new dimensions. Cancer Discov. 2022;12(1):31–46. https://doi.org/10.1158/2159-8290.CD-21-1059.

    Article  CAS  PubMed  Google Scholar 

  17. Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144(5):646–74. https://doi.org/10.1016/j.cell.2011.02.013.

    Article  CAS  PubMed  Google Scholar 

  18. Yanahan D, Weinberg RA, Hallm-Yang CW, Budak H. Exploiting stokes and anti-stokes type emission profiles of aptamer-functionalized luminescent nanoprobes for multiplex sensing applications. ChemistrySelect. 2018;3(21):5814–23. https://doi.org/10.1002/slct.201801008.

    Article  CAS  Google Scholar 

  19. Zhang H, Zhou L, Zhu Z, Yang C. Recent progress in aptamer-based functional probes for bioanalysis and biomedicine. Chemistry (Easton). 2016;22(29):9886–900. https://doi.org/10.1002/chem.201503543.

    Article  CAS  Google Scholar 

  20. Liu Y, Yang G, Li T, Deng Y, Chen Z, He N. Selection of a DNA aptamer for the development of fluorescent aptasensor for carbaryl detection. Chin Chem Lett. 2021;32(6):1957–62. https://doi.org/10.1016/j.cclet.2021.01.016.

    Article  CAS  Google Scholar 

  21. Yang G, Zhu C, Zhao L, Li L, Huang Y, Zhang Y, et al. Pressure controllable aptamers picking strategy by targets competition. Chin Chem Lett. 2021;32(1):218–20. https://doi.org/10.1016/j.cclet.2020.10.018.

    Article  CAS  Google Scholar 

  22. Borghei YS, Hosseini M, Dadmehr M, Hosseinkhani S, Ganjali MR, Sheikhnejad R. Visual detection of cancer cells by colorimetric aptasensor based on aggregation of gold nanoparticles induced by DNA hybridization. Anal Chim Acta. 2016;904:92–7. https://doi.org/10.1016/j.aca.2015.11.026.

    Article  CAS  PubMed  Google Scholar 

  23. Leitner M, Poturnayova A, Lamprecht C, Weich S, Snejdarkova M, Karpisova I, et al. Characterization of the specific interaction between the DNA aptamer sgc8c and protein tyrosine kinase-7 receptors at the surface of T-cells by biosensing AFM. Anal Bioanal Chem. 2017;409(11):2767–76. https://doi.org/10.1007/s00216-017-0238-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, et al. Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci U S A. 2006;103(32):11838–43. https://doi.org/10.1073/pnas.0602615103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng Y, Zhao Y, Di Y, Xiu C, He L, Liao S, et al. DNA aptamers from whole-serum SELEX as new diagnostic agents against gastric cancer. RSC Adv. 2019;9(2):950–7. https://doi.org/10.1039/c8ra08642g.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bayrac AT, Sefah K, Parekh P, Bayrac C, Gulbakan B, Oktem HA, et al. In vitro selection of DNA aptamers to glioblastoma multiforme. ACS Chem Neurosci. 2011;2(3):175–81. https://doi.org/10.1021/cn100114k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Shigdar S, Lin J, Yu Y, Pastuovic M, Wei M, Duan W. RNA aptamer against a cancer stem cell marker epithelial cell adhesion molecule. Cancer Sci. 2011;102(5):991–8. https://doi.org/10.1111/j.1349-7006.2011.01897.x.

    Article  CAS  PubMed  Google Scholar 

  28. Khoshfetrat SM, Mehrgardi MA. Amplified detection of leukemia cancer cells using an aptamer-conjugated gold-coated magnetic nanoparticles on a nitrogen-doped graphene modified electrode. Bioelectrochemistry. 2017;114:24–32. https://doi.org/10.1016/j.bioelechem.2016.12.001.

    Article  CAS  PubMed  Google Scholar 

  29. Li F, Wang Q, Zhang H, Deng T, Feng P, Hu B, et al. Characterization of a DNA aptamer for ovarian cancer clinical tissue recognition and in vivo imaging. Cell Physiol Biochem. 2018;51(6):2564–74. https://doi.org/10.1159/000495925.

    Article  CAS  PubMed  Google Scholar 

  30. An Y, Hu Y, Li X, Li Z, Duan J, Yang XD. Selection of a novel DNA aptamer against OFA/iLRP for targeted delivery of doxorubicin to AML cells. Sci Rep. 2019;9(1):7343. https://doi.org/10.1038/s41598-019-43910-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Daniels DA, Chen H, Hicke BJ, Swiderek KM, Gold L. A tenascin-C aptamer identified by tumor cell SELEX: systematic evolution of ligands by exponential enrichment. Proc Natl Acad Sci. 2003;100(26):15416. https://doi.org/10.1073/pnas.2136683100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Charlton J, Sennello J, Smith D. In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol. 1997;4(11):809–16. https://doi.org/10.1016/s1074-5521(97)90114-9.

    Article  CAS  PubMed  Google Scholar 

  33. Hicke BJ, Stephens AW, Gould T, Chang YF, Lynott CK, Heil J, et al. Tumor targeting by an aptamer. J Nucl Med. 2006;47(4):668–78.

    CAS  PubMed  Google Scholar 

  34. Wang L, Jacobson O, Avdic D, Rotstein BH, Weiss ID, Collier L, et al. Ortho-stabilized (18) F-azido click agents and their application in PET imaging with single-stranded DNA aptamers. Angew Chem Int Ed Engl. 2015;54(43):12777–81. https://doi.org/10.1002/anie.201505927.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Li J, Zheng H, Bates PJ, Malik T, Li XF, Trent JO, et al. Aptamer imaging with Cu-64 labeled AS1411: preliminary assessment in lung cancer. Nucl Med Biol. 2014;41(2):179–85. https://doi.org/10.1016/j.nucmedbio.2013.10.008.

    Article  CAS  PubMed  Google Scholar 

  36. Wu X, Liang H, Tan Y, Yuan C, Li S, Li X, et al. Cell-SELEX aptamer for highly specific radionuclide molecular imaging of glioblastoma in vivo. PLoS ONE. 2014;9(6): e90752. https://doi.org/10.1371/journal.pone.0090752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jacobson O, Yan X, Niu G, Weiss ID, Ma Y, Szajek LP, et al. PET imaging of tenascin-C with a radiolabeled single-stranded DNA aptamer. J Nucl Med. 2015;56(4):616–21. https://doi.org/10.2967/jnumed.114.149484.

    Article  CAS  PubMed  Google Scholar 

  38. Park JY, Lee TS, Song IH, Cho YL, Chae JR, Yun M, et al. Hybridization-based aptamer labeling using complementary oligonucleotide platform for PET and optical imaging. Biomaterials. 2016;100:143–51. https://doi.org/10.1016/j.biomaterials.2016.05.035.

    Article  CAS  PubMed  Google Scholar 

  39. de Sousa Lacerda CM, Ferreira IM, Dos Santos SR, de Barros AL, Fernandes SO, Cardoso VN, et al. (1–>3)-beta-D-glucan aptamers labeled with technetium-99m: Biodistribution and imaging in experimental models of bacterial and fungal infection. Nucl Med Biol. 2017;46:19–24. https://doi.org/10.1016/j.nucmedbio.2016.11.008.

    Article  CAS  PubMed  Google Scholar 

  40. Ferreira IM, de Sousa Lacerda CM, Dos Santos SR, de Barros ALB, Fernandes SO, Cardoso VN, et al. Detection of bacterial infection by a technetium-99m-labeled peptidoglycan aptamer. Biomed Pharmacother. 2017;93:931–8. https://doi.org/10.1016/j.biopha.2017.07.017.

    Article  CAS  PubMed  Google Scholar 

  41. Santos SRD, de Sousa Lacerda CM, Ferreira IM, de Barros ALB, Fernandes SO, Cardoso VN, et al. Scintigraphic imaging of Staphylococcus aureus infection using (99m)Tc radiolabeled aptamers. Appl Radiat Isot. 2017;128:22–7. https://doi.org/10.1016/j.apradiso.2017.06.043.

    Article  CAS  PubMed  Google Scholar 

  42. Fletcher NL, Houston ZH, Simpson JD, Veedu RN, Thurecht KJ. Designed multifunctional polymeric nanomedicines: long-term biodistribution and tumour accumulation of aptamer-targeted nanomaterials. Chem Commun (Camb). 2018;54(82):11538–41. https://doi.org/10.1039/c8cc05831h.

    Article  CAS  Google Scholar 

  43. Cheng S, Jacobson O, Zhu G, Chen Z, Liang SH, Tian R, et al. PET imaging of EGFR expression using an (18)F-labeled RNA aptamer. Eur J Nucl Med Mol Imaging. 2019;46(4):948–56. https://doi.org/10.1007/s00259-018-4105-1.

    Article  CAS  PubMed  Google Scholar 

  44. Tajrishi MM, Tuteja R, Tuteja N. Nucleolin: the most abundant multifunctional phosphoprotein of nucleolus. Commun Integr Biol. 2011;4(3):267–75. https://doi.org/10.4161/cib.4.3.14884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Soundararajan S, Chen W, Spicer EK, Courtenay-Luck N, Fernandes DJ. The nucleolin targeting aptamer AS1411 destabilizes Bcl-2 messenger RNA in human breast cancer cells. Cancer Res. 2008;68(7):2358–65. https://doi.org/10.1158/0008-5472.CAN-07-5723.

    Article  CAS  PubMed  Google Scholar 

  46. Palmieri D, Richmond T, Piovan C, Sheetz T, Zanesi N, Troise F, et al. Human anti-nucleolin recombinant immunoagent for cancer therapy. Proc Natl Acad Sci U S A. 2015;112(30):9418–23. https://doi.org/10.1073/pnas.1507087112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Girvan AC, Teng Y, Casson LK, Thomas SD, Juliger S, Ball MW, et al. AGRO100 inhibits activation of nuclear factor-kappaB (NF-kappaB) by forming a complex with NF-kappaB essential modulator (NEMO) and nucleolin. Mol Cancer Ther. 2006;5(7):1790–9. https://doi.org/10.1158/1535-7163.MCT-05-0361.

    Article  CAS  PubMed  Google Scholar 

  48. Hwang DW, Ko HY, Lee JH, Kang H, Ryu SH, Song IC, et al. A nucleolin-targeted multimodal nanoparticle imaging probe for tracking cancer cells using an aptamer. J Nucl Med. 2010;51(1):98–105. https://doi.org/10.2967/jnumed.109.069880.

    Article  CAS  PubMed  Google Scholar 

  49. Park JY, Cho YL, Chae JR, Moon SH, Cho WG, Choi YJ, et al. Gemcitabine-incorporated G-quadruplex aptamer for targeted drug delivery into pancreas cancer. Mol Ther Nucleic Acids. 2018;12:543–53. https://doi.org/10.1016/j.omtn.2018.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yang S, Li H, Xu L, Deng Z, Han W, Liu Y, et al. Oligonucleotide aptamer-mediated precision therapy of hematological malignancies. Mol Ther Nucleic Acids. 2018;13:164–75. https://doi.org/10.1016/j.omtn.2018.08.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Abatemarco J, Sarhan MF, Wagner JM, Lin JL, Liu L, Hassouneh W, et al. RNA-aptamers-in-droplets (RAPID) high-throughput screening for secretory phenotypes. Nat Commun. 2017;8(1):332. https://doi.org/10.1038/s41467-017-00425-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Bhojani MS, Ranga R, Luker GD, Rehemtulla A, Ross BD, Van Dort ME. Synthesis and investigation of a radioiodinated F3 peptide analog as a SPECT tumor imaging radioligand. PLoS ONE. 2011;6(7): e22418. https://doi.org/10.1371/journal.pone.0022418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Tong X, Ga L, Ai J, Wang Y. Progress in cancer drug delivery based on AS1411 oriented nanomaterials. J Nanobiotechnology. 2022;20(1):57. https://doi.org/10.1186/s12951-022-01240-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lam PY, Hillyar CR, Able S, Vallis KA. Synthesis and evaluation of an (18) F-labeled derivative of F3 for targeting surface-expressed nucleolin in cancer and tumor endothelial cells. J Labelled Comp Radiopharm. 2016;59(12):492–9. https://doi.org/10.1002/jlcr.3439.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ghosh A, Heston WD. Tumor target prostate specific membrane antigen (PSMA) and its regulation in prostate cancer. J Cell Biochem. 2004;91(3):528–39. https://doi.org/10.1002/jcb.10661.

    Article  CAS  PubMed  Google Scholar 

  56. Dassie JP, Hernandez LI, Thomas GS, Long ME, Rockey WM, Howell CA, et al. Targeted inhibition of prostate cancer metastases with an RNA aptamer to prostate-specific membrane antigen. Mol Ther. 2014;22(11):1910–22. https://doi.org/10.1038/mt.2014.117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang T, Jiao J, Lv Y, Zhou Q, Cao S, Jiang S, et al. Preparation and preclinical study of 99m technetium labeled PSMA aptamer for prostate cancer. JOURNAL OF SUN YAT⁃SEN UNIVERSITY(MEDICAL SCIENCES). 2017;38(006):848–53.

    Google Scholar 

  58. Eder M, Schafer M, Bauder-Wust U, Hull WE, Wangler C, Mier W, et al. 68Ga-complex lipophilicity and the targeting property of a urea-based PSMA inhibitor for PET imaging. Bioconjug Chem. 2012;23(4):688–97. https://doi.org/10.1021/bc200279b.

    Article  CAS  PubMed  Google Scholar 

  59. Bois F, Noirot C, Dietemann S, Mainta IC, Zilli T, Garibotto V, et al. [(68)Ga]Ga-PSMA-11 in prostate cancer: a comprehensive review. Am J Nucl Med Mol Imaging. 2020;10(6):349–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Holland JP, Divilov V, Bander NH, Smith-Jones PM, Larson SM, Lewis JS. 89Zr-DFO-J591 for immunoPET of prostate-specific membrane antigen expression in vivo. J Nucl Med. 2010;51(8):1293–300. https://doi.org/10.2967/jnumed.110.076174.

    Article  CAS  PubMed  Google Scholar 

  61. Evazalipour M, D’Huyvetter M, Tehrani BS, Abolhassani M, Omidfar K, Abdoli S, et al. Generation and characterization of nanobodies targeting PSMA for molecular imaging of prostate cancer. Contrast Media Mol Imaging. 2014;9(3):211–20. https://doi.org/10.1002/cmmi.1558.

    Article  CAS  PubMed  Google Scholar 

  62. Saule L, Radzina M, Liepa M, Roznere L, Kalnina M, Lioznovs A, et al. Diagnostic scope of (18)F-PSMA-1007 PET/CT: comparison with multiparametric MRI and bone scintigraphy for the assessment of early prostate cancer recurrence. Am J Nucl Med Mol Imaging. 2021;11(5):395–405.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Medina-Ornelas S, Garcia-Perez F, Estrada-Lobato E, Ochoa-Carrillo F. (68)Ga-PSMA PET/CT in the evaluation of locally advanced and metastatic breast cancer, a single center experience. Am J Nucl Med Mol Imaging. 2020;10(3):135–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Han S, Woo S, Kim YJ, Suh CH. Impact of 68Ga-PSMA PET on the Management of Patients with Prostate Cancer: A Systematic Review and Meta-analysis. Eur Urol. 2018;74(2):179–90. https://doi.org/10.1016/j.eururo.2018.03.030.

    Article  CAS  PubMed  Google Scholar 

  65. Hinkle GH, Burgers JK, Olsen JO, Williams BS, Lamatrice RA, Barth RF, et al. Prostate cancer abdominal metastases detected with indium-111 capromab pendetide. J Nucl Med. 1998;39(4):650–2.

    CAS  PubMed  Google Scholar 

  66. Cimadamore A, Cheng M, Santoni M, Lopez-Beltran A, Battelli N, Massari F, et al. New prostate cancer targets for diagnosis, imaging, and therapy: focus on prostate-specific membrane antigen. Front Oncol. 2018;8:653. https://doi.org/10.3389/fonc.2018.00653.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of Lutetium-177–labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19(18):5182–91. https://doi.org/10.1158/1078-0432.Ccr-13-0231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. De Vincentis G, Gerritsen W, Gschwend JE, Hacker M, Lewington V, O’Sullivan JM, et al. Advances in targeted alpha therapy for prostate cancer. Ann Oncol. 2019;30(11):1728–39. https://doi.org/10.1093/annonc/mdz270.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Tagawa ST, Vallabhajosula S, Christos PJ, Jhanwar YS, Batra JS, Lam L, et al. Phase 1/2 study of fractionated dose lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 ((177) Lu-J591) for metastatic castration-resistant prostate cancer. Cancer. 2019;125(15):2561–9. https://doi.org/10.1002/cncr.32072.

    Article  CAS  PubMed  Google Scholar 

  70. Yang EY, Shah K. Nanobodies: next generation of cancer diagnostics and therapeutics. Front Oncol. 2020;10:1182. https://doi.org/10.3389/fonc.2020.01182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang Y, Fan Z, Shao L, Kong X, Hou X, Tian D, et al. Nanobody-derived nanobiotechnology tool kits for diverse biomedical and biotechnology applications. Int J Nanomedicine. 2016;11:3287–303. https://doi.org/10.2147/IJN.S107194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zagzag D, Friedlander DR, Miller DC, Dosik J, Cangiarella J, Kostianovsky M, et al. Tenascin expression in astrocytomas correlates with angiogenesis. Cancer Res. 1995;55(4):907–14.

    CAS  PubMed  Google Scholar 

  73. Heuveling DA, de Bree R, Vugts DJ, Huisman MC, Giovannoni L, Hoekstra OS, et al. Phase 0 microdosing PET study using the human mini antibody F16SIP in head and neck cancer patients. J Nucl Med. 2013;54(3):397–401. https://doi.org/10.2967/jnumed.112.111310.

    Article  CAS  PubMed  Google Scholar 

  74. Mitri Z, Constantine T, O’Regan R. The HER2 receptor in breast cancer: pathophysiology, clinical use, and new advances in therapy. Chemotherapy Research and Practice. 2012;2012: 743193. https://doi.org/10.1155/2012/743193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Baselga J, Swain SM. Novel anticancer targets: revisiting ERBB2 and discovering ERBB3. Nat Rev Cancer. 2009;9(7):463–75. https://doi.org/10.1038/nrc2656.

    Article  CAS  PubMed  Google Scholar 

  76. Moosavian SA, Jaafari MR, Taghdisi SM, Mosaffa F, Badiee A, Abnous K. Development of RNA aptamers as molecular probes for HER2(+) breast cancer study using cell-SELEX. Iran J Basic Med Sci. 2015;18(6):576–86.

    PubMed  PubMed Central  Google Scholar 

  77. Jiang D, Im HJ, Sun H, Valdovinos HF, England CG, Ehlerding EB, et al. Radiolabeled pertuzumab for imaging of human epidermal growth factor receptor 2 expression in ovarian cancer. Eur J Nucl Med Mol Imaging. 2017;44(8):1296–305. https://doi.org/10.1007/s00259-017-3663-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wei W, Jiang D, Rosenkrans ZT, Barnhart TE, Engle JW, Luo Q, et al. HER2-targeted multimodal imaging of anaplastic thyroid cancer. Am J Cancer Res. 2019;9(11):2413–27.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gaykema SB, Schröder CP, Vitfell-Rasmussen J, Chua S, Oude Munnink TH, Brouwers AH, et al. 89Zr-trastuzumab and 89Zr-bevacizumab PET to evaluate the effect of the HSP90 inhibitor NVP-AUY922 in metastatic breast cancer patients. Clin Cancer Res. 2014;20(15):3945–54. https://doi.org/10.1158/1078-0432.Ccr-14-0491.

    Article  CAS  PubMed  Google Scholar 

  80. Gaykema SB, Brouwers AH, Hovenga S, Lub-de Hooge MN, de Vries EG, Schröder CP. Zirconium-89-trastuzumab positron emission tomography as a tool to solve a clinical dilemma in a patient with breast cancer. J Clin Oncol. 2012;30(6):e74–5. https://doi.org/10.1200/jco.2011.38.0204.

    Article  PubMed  Google Scholar 

  81. Lee HJ, Ehlerding EB, Jiang D, Barnhart TE, Cao T, Wei W, et al. Dual-labeled pertuzumab for multimodality image-guided ovarian tumor resection. Am J Cancer Res. 2019;9(7):1454–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Keyaerts M, Xavier C, Heemskerk J, Devoogdt N, Everaert H, Ackaert C, et al. Phase I Study of 68Ga-HER2-nanobody for PET/CT assessment of HER2 expression in breast carcinoma. J Nucl Med. 2016;57(1):27–33. https://doi.org/10.2967/jnumed.115.162024.

    Article  CAS  PubMed  Google Scholar 

  83. Velikyan I, Schweighöfer P, Feldwisch J, Seemann J, Frejd FY, Lindman H, et al. Diagnostic HER2-binding radiopharmaceutical, [(68)Ga]Ga-ABY-025, for routine clinical use in breast cancer patients. Am J Nucl Med Mol Imaging. 2019;9(1):12–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Velikyan I, Wennborg A, Feldwisch J, Lindman H, Carlsson J, Sörensen J. Good manufacturing practice production of [(68)Ga]Ga-ABY-025 for HER2 specific breast cancer imaging. Am J Nucl Med Mol Imaging. 2016;6(2):135–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Jacobson O, Weiss ID, Wang L, Wang Z, Yang X, Dewhurst A, et al. 18F-labeled single-stranded DNA aptamer for pet imaging of protein tyrosine kinase-7 expression. J Nucl Med. 2015;56(11):1780–5. https://doi.org/10.2967/jnumed.115.160960.

    Article  CAS  PubMed  Google Scholar 

  86. Zhang X, Potty AS, Jackson GW, Stepanov V, Tang A, Liu Y, et al. Engineered 5S ribosomal RNAs displaying aptamers recognizing vascular endothelial growth factor and malachite green. J Mol Recognit. 2009;22(2):154–61. https://doi.org/10.1002/jmr.917.

    Article  CAS  PubMed  Google Scholar 

  87. Apte RS, Chen DS, Ferrara N. VEGF in signaling and disease: beyond discovery and development. Cell. 2019;176(6):1248–64. https://doi.org/10.1016/j.cell.2019.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Roth DB, Prenner JL, Green SN, Yarian DL, Leff SR, Friedman ES, et al. Early clinical experience with pegaptanib sodium (Macugen) in age–related macular degeneration. Invest Ophthalmol Vis Sci. 2006;47(13):2149-.

    Google Scholar 

  89. Qin ZX, Li QW, Liu GY, Luo CX, Xie GF, Zheng L, et al. Imaging targeted at tumor with (188)Re-labeled VEGF(189) exon 6-encoded peptide and effects of the transfecting truncated KDR gene in tumor-bearing nude mice. Nucl Med Biol. 2009;36(5):535–43. https://doi.org/10.1016/j.nucmedbio.2009.02.001.

    Article  CAS  PubMed  Google Scholar 

  90. Chen H, Ding X, Gao Y, Jiang X, Liu X, Chen Y, et al. Inhibition of angiogenesis by a novel neutralizing antibody targeting human VEGFR-3. MAbs. 2013;5(6):956–61. https://doi.org/10.4161/mabs.26239.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Arjaans M, Schröder CP, Oosting SF, Dafni U, Kleibeuker JE, de Vries EGE. VEGF pathway targeting agents, vessel normalization and tumor drug uptake: from bench to bedside. 2016;7(16). https://doi.org/10.18632/oncotarget.6918.

  92. Gu Y, Wang J, Li K, Zhang L, Ren H, Guo L, et al. Preclinical pharmacokinetics and disposition of a novel selective VEGFR inhibitor fruquintinib (HMPL-013) and the prediction of its human pharmacokinetics. Cancer Chemother Pharmacol. 2014;74(1):95–115. https://doi.org/10.1007/s00280-014-2471-3.

    Article  CAS  PubMed  Google Scholar 

  93. González-Ruíz A, Ferro-Flores G, Jiménez-Mancilla N, Escudero-Castellanos A, Ocampo-García B, Luna-Gutiérrez M, et al. In vitro and in vivo synergistic effect of radiotherapy and plasmonic photothermal therapy on the viability of cancer cells using 177Lu–Au-NLS-RGD-Aptamer nanoparticles under laser irradiation. J Radioanal Nucl Chem. 2018;318(3):1913–21. https://doi.org/10.1007/s10967-018-6266-6.

    Article  CAS  Google Scholar 

  94. Niu G, Li Z, Xie J, Le QT, Chen X. PET of EGFR antibody distribution in head and neck squamous cell carcinoma models. J Nucl Med. 2009;50(7):1116–23. https://doi.org/10.2967/jnumed.109.061820.

    Article  CAS  PubMed  Google Scholar 

  95. Li X, Zhang L, Guo X, Xie F, Shen C, Jun Y, et al. Self-assembled RNA nanocarrier-mediated chemotherapy combined with molecular targeting in the treatment of esophageal squamous cell carcinoma. J Nanobiotechnology. 2021;19(1):388. https://doi.org/10.1186/s12951-021-01135-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH. Protein-based nanoparticles as drug delivery systems. Pharmaceutics. 2020;12(7). https://doi.org/10.3390/pharmaceutics12070604.

  97. Tian L, Shao M, Gong Y, Chao Y, Wei T, Yang K, et al. Albumin-binding lipid-aptamer conjugates for cancer immunoimaging and immunotherapy. SCIENCE CHINA Chem. 2021. https://doi.org/10.1007/s11426-021-1168-4.

    Article  Google Scholar 

  98. Keefe AD, Pai S, Ellington A. Aptamers as therapeutics. Nat Rev Drug Discov. 2010;9(7):537–50. https://doi.org/10.1038/nrd3141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mi J, Liu Y, Rabbani ZN, Yang Z, Urban JH, Sullenger BA, et al. In vivo selection of tumor-targeting RNA motifs. Nat Chem Biol. 2010;6(1):22–4. https://doi.org/10.1038/nchembio.277.

    Article  CAS  PubMed  Google Scholar 

  100. Xing S, Jiang D, Li F, Li J, Li Q, Huang Q, et al. Constructing higher-order DNA nanoarchitectures with highly purified DNA nanocages. ACS Appl Mater Interfaces. 2015;7(24):13174–9. https://doi.org/10.1021/am505592e.

    Article  CAS  PubMed  Google Scholar 

  101. Jiang D, Sun Y, Li J, Li Q, Lv M, Zhu B, et al. Multiple-armed tetrahedral DNA nanostructures for tumor-targeting, dual-modality in vivo imaging. ACS Appl Mater Interfaces. 2016;8(7):4378–84. https://doi.org/10.1021/acsami.5b10792.

    Article  CAS  PubMed  Google Scholar 

  102. Agrawal S, Temsamani J, Tang JY. Pharmacokinetics, biodistribution, and stability of oligodeoxynucleotide phosphorothioates in mice. Proc Natl Acad Sci U S A. 1991;88(17):7595–9. https://doi.org/10.1073/pnas.88.17.7595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang H, Liu Q, Lan X, Jiang D. Framework nucleic acids in nuclear medicine imaging: shedding light on nano-bio interactions. Angew Chem Int Ed Engl. 2021. https://doi.org/10.1002/anie.202111980.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Jiang D, Im HJ, Boleyn ME, England CG, Ni D, Kang L, et al. Efficient renal clearance of DNA tetrahedron nanoparticles enables quantitative evaluation of kidney function. Nano Res. 2019;12(3):637–42. https://doi.org/10.1007/s12274-019-2271-5.

    Article  CAS  PubMed  Google Scholar 

  105. Jiang D, Ge Z, Im HJ, England CG, Ni D, Hou J, et al. DNA origami nanostructures can exhibit preferential renal uptake and alleviate acute kidney injury. Nat Biomed Eng. 2018;2(11):865–77. https://doi.org/10.1038/s41551-018-0317-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu Q, Zang J, Sui H, Ren J, Guo H, Wang H, et al. Peptide receptor radionuclide therapy of late-stage neuroendocrine tumor patients with multiple cycles of (177)Lu-DOTA-EB-TATE. J Nucl Med. 2021;62(3):386–92. https://doi.org/10.2967/jnumed.120.248658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Zang J, Liu Q, Sui H, Wang R, Jacobson O, Fan X, et al. (177)Lu-EB-PSMA radioligand therapy with escalating doses in patients with metastatic castration-resistant prostate cancer. J Nucl Med. 2020;61(12):1772–8. https://doi.org/10.2967/jnumed.120.242263.

    Article  CAS  PubMed  Google Scholar 

  108. Nutiu R, Li Y. Structure-switching signaling aptamers. J Am Chem Soc. 2003;125(16):4771–8. https://doi.org/10.1021/ja028962o.

    Article  CAS  PubMed  Google Scholar 

  109. Zhou J, Rossi J. Aptamers as targeted therapeutics: current potential and challenges. Nat Rev Drug Discov. 2017;16(3):181–202. https://doi.org/10.1038/nrd.2016.199.

    Article  CAS  PubMed  Google Scholar 

  110. Burdick AD, Sciabola S, Mantena SR, Hollingshead BD, Stanton R, Warneke JA, et al. Sequence motifs associated with hepatotoxicity of locked nucleic acid–modified antisense oligonucleotides. Nucleic Acids Res. 2014;42(8):4882–91. https://doi.org/10.1093/nar/gku142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Shen W, De Hoyos CL, Sun H, Vickers TA, Liang XH, Crooke ST. Acute hepatotoxicity of 2’ fluoro-modified 5–10-5 gapmer phosphorothioate oligonucleotides in mice correlates with intracellular protein binding and the loss of DBHS proteins. Nucleic Acids Res. 2018;46(5):2204–17. https://doi.org/10.1093/nar/gky060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Lincoff AM, Mehran R, Povsic TJ, Zelenkofske SL, Huang Z, Armstrong PW, et al. Effect of the REG1 anticoagulation system versus bivalirudin on outcomes after percutaneous coronary intervention (REGULATE-PCI): a randomised clinical trial. Lancet. 2016;387(10016):349–56. https://doi.org/10.1016/s0140-6736(15)00515-2.

    Article  CAS  PubMed  Google Scholar 

  113. Ivens IA, Achanzar W, Baumann A, Brandli-Baiocco A, Cavagnaro J, Dempster M, et al. PEGylated biopharmaceuticals: current experience and considerations for nonclinical development. Toxicol Pathol. 2015;43(7):959–83. https://doi.org/10.1177/0192623315591171.

    Article  CAS  PubMed  Google Scholar 

  114. Karabasz A, Szczepanowicz K, Cierniak A, Mezyk-Kopec R, Dyduch G, Szczęch M, et al. In vivo studies on pharmacokinetics, toxicity and immunogenicity of polyelectrolyte nanocapsules functionalized with two different polymers: poly-L-glutamic acid or PEG. Int J Nanomedicine. 2019;14:9587–602. https://doi.org/10.2147/ijn.S230865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ni S, Zhuo Z, Pan Y, Yu Y, Li F, Liu J, et al. Recent progress in aptamer discoveries and modifications for therapeutic applications. ACS Appl Mater Interfaces. 2021;13(8):9500–19. https://doi.org/10.1021/acsami.0c05750.

    Article  CAS  PubMed  Google Scholar 

  116. Caruthers MH. Gene synthesis machines: DNA chemistry and its uses. Science. 1985;230(4723):281–5. https://doi.org/10.1126/science.3863253.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported, in part, by the Wuhan Union Hospital, the National Natural Science Foundation of China (82102121, 21834007, 91953106), the Yellow Crane Talent (Science & Technology) Program of Wuhan City, and the Science Foundation of the Shanghai Municipal Science and Technology Commission (19JC1410300, 21DZ2210100).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunhai Fan, Xiaoli Lan or Dawei Jiang.

Ethics declarations

Ethics approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Preclinical Imaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, W., Song, Y., Li, Q. et al. Advances in aptamer-based nuclear imaging. Eur J Nucl Med Mol Imaging 49, 2544–2559 (2022). https://doi.org/10.1007/s00259-022-05782-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-022-05782-0

Keywords

Navigation