Skip to main content

Advertisement

Log in

Cuneus/precuneus as a central hub for brain functional connectivity of mild cognitive impairment in idiopathic REM sleep behavior patients

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To investigate brain functional correlates of mild cognitive impairment (MCI) in idiopathic REM sleep behavior disorder (iRBD).

Methods

Thirty-nine consecutive iRBD patients, 17 with (RBD-MCI, 73.6±6.5 years), and 22 without (RBD-NC, 69.6±6.1 years) MCI underwent neuropsychological assessment, 18F-FDG-PET, and 123I-FP-CIT-SPECT as a marker of nigro-striatal dopaminergic function. Forty-two healthy subjects (69.6±8.5 years) were used as control for 18F-FDG-PET analysis. Brain metabolism was compared between the three groups by univariate analysis of variance. Post hoc comparison between RBD-MCI and RBD-NC was performed to investigate the presence of an MCI-related volume of interest (MCI-VOI). Brain functional connectivity was explored by interregional correlation analysis (IRCA), using the whole-brain normalized MCI-VOI uptake as the independent variable. Moreover, the MCI-VOI uptake was correlated with 123I-FP-CIT-SPECT specific-to-non displaceable binding ratios (SBR) and neuropsychological variables. Finally, the MCI-VOI white matter structural connectivity was analyzed by using a MRI-derived human atlas.

Results

The MCI-VOI was characterized by a relative hypometabolism involving precuneus and cuneus (height threshold p<0.0001). IRCA (height threshold p<0.0001) revealed a brain functional network involving regions in frontal, temporal, parietal, and occipital lobes, thalamus, caudate, and red nuclei in iRBD patients. In controls, the network was smaller and involved temporal, occipital, cingulate cortex, and cerebellum. Moreover, MCI-VOI metabolism was correlated with verbal memory (p=0.01), executive functions (p=0.0001), and nigro-putaminal SBR (p=0.005). Finally, MCI-VOI was involved in a white matter network including cingulate fasciculus and corpus callosum.

Conclusion

Our data suggest that cuneus/precuneus is a hub of a large functional network subserving cognitive function in iRBD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Arnulf I. REM sleep behavior disorder: Motor manifestations and pathophysiology. Mov Disord. 2012;27:677–89.

    Article  PubMed  Google Scholar 

  2. Schenck CH, Boeve BF, Mahowald MW. Delayed emergence of a parkinsonian disorder or dementia in 81% of older men initially diagnosed with idiopathic rapid eye movement sleep behavior disorder: a 16-year update on a previously reported series. Sleep Med. 2013;14:744–8.

    Article  PubMed  Google Scholar 

  3. Gagnon JF, Vendette M, Postuma RB, Desjardins C, Massicotte-Marquez J, Panisset M, et al. Mild cognitive impairment in rapid eye movement sleep behavior disorder and Parkinson’s disease. Ann Neurol. 2009;66:39–47.

    Article  PubMed  Google Scholar 

  4. McKeith IG, Boeve BF, DIckson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies. Neurology. 2017;89:88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marchand GD, Postuma RB, Escudier F, De Roy J, Pelletier A, Montplaisir J, et al. How does dementia with Lewy bodies start? prodromal cognitive changes in REM sleep behavior disorder. Ann Neurol. 2018;83:1016–26.

    Article  Google Scholar 

  6. Bauckneht M, Chincarini A, De Carli F, Terzaghi M, Morbelli S, Nobili F, et al. Presynaptic dopaminergic neuroimaging in REM sleep behavior disorder: a systematic review and meta-analysis. Sleep Med Rev. 2018;41:266–74.

  7. Arnaldi D, Nobili F. The clinical relevance of cognitive impairment in REM sleep behavior disorder. Neurology. 2018;90:909–10.

    Article  PubMed  Google Scholar 

  8. Rahayel S, Postuma RB, Montplaisir J, Génier Marchand D, Escudier F, Gaubert M, et al. Cortical and subcortical gray matter bases of cognitive deficits in REM sleep behavior disorder. Neurology. 2018;90:E1759–70.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Vendette M, Montplaisir J, Gosselin N, Soucy JP, Postuma RB, Dang-Vu TT, et al. Brain perfusion anomalies in rapid eye movement sleep behavior disorder with mild cognitive impairment. Mov Disord. 2012;27:1255–61.

    Article  PubMed  Google Scholar 

  10. Rodrigues Brazète J, Montplaisir J, Petit D, Postuma RB, Bertrand JA, Génier Marchand D, et al. Electroencephalogram slowing in rapid eye movement sleep behavior disorder is associated with mild cognitive impairment. Sleep Med. 2013;14:1059–63.

    Article  PubMed  Google Scholar 

  11. Meles SK, Renken RJ, Janzen A, Vadasz D, Pagani M, Arnaldi D, et al. The metabolic pattern of Idiopathic rem sleep behavior disorder reflects early-stage Parkinson disease. J Nucl Med. 2018;59:1437–44.

    Article  CAS  PubMed  Google Scholar 

  12. Postuma RB, Iranzo A, Hu M, Högl B, Boeve BF, Manni R, et al. Risk and predictors of dementia and parkinsonism in idiopathic REM sleep behaviour disorder: a multicentre study. Brain. 2019;142:744–59.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Arnaldi D, Meles SK, Giuliani A, Morbelli S, Renken RJ, Janzen A, et al. Brain glucose metabolism heterogeneity in idiopathic REM sleep behavior disorder and in Parkinson’s disease. J Parkinsons Dis. 2019;9:229–39.

    Article  CAS  PubMed  Google Scholar 

  14. AASM. International Classification of Sleep Disorders, 3rd ed. Darien, IL: American Academy of Sleep Medicine. 2014.

  15. Wahlund LO, Barkhof F, Fazekas F, Bronge L, Augustin M, Sjögren M, et al. A new rating scale for age-related white matter changes applicable to MRI and CT. Stroke. 2001;32:1318–22.

    Article  CAS  PubMed  Google Scholar 

  16. Goetz CG, Fahn S, Martinez-Martin P, Poewe W, Sampaio C, Stebbins GT, et al. Movement disorder society-sponsored revision of the unified Parkinson’s disease rating scale (MDS-UPDRS): Process, format, and clinimetric testing plan. Mov Disord. 2007;22:41–7.

    Article  PubMed  Google Scholar 

  17. Meara J, Mitchelmore E, Hobson P. Use of the GDS-15 geriatric depression scale as a screening instrument for depressive symptomatology in patients with Parkinson’s disease and their carers in the community. Age Ageing. 1999;28:35–8.

    Article  CAS  PubMed  Google Scholar 

  18. Gupta V, Lipsitz LA. Orthostatic hypotension in the elderly: diagnosis and treatment. Am J Med. 2007;120:841–7.

    Article  PubMed  Google Scholar 

  19. Briner HR, Simmen D. Smell diskettes as screening test of olfaction. Rhinology. 1999;37:145–8.

    CAS  PubMed  Google Scholar 

  20. Kobal G, Hummel T, Sekinger B, Barz S, Roscher S, Wolf S. “Sniffin” sticks’: screening of olfactory performance. Rhinology. 1996;34:222–6.

    CAS  PubMed  Google Scholar 

  21. Novelli G, Papagno C, Capitani E, Laiacona N, Vallar G, Cappa SF. Tre test clinici di ricerca e produzione lessicale. Taratura su soggetti normali. Arch Psicol Neurol Psichiatr. 1986;47(4):477–506.

  22. Brugnolo A, De Carli F, Accardo J, Amore M, Bosia LE, Bruzzaniti C, et al. An updated Italian normative dataset for the Stroop color word test (SCWT). Neurol Sci. 2016;37:365–72.

    Article  CAS  PubMed  Google Scholar 

  23. Amodio P, Wenin H, Del Piccolo F, Mapelli D, Montagnese S, Pellegrini A, et al. Variability of Trail Making Test, Symbol Digit Test and Line Trait Test in normal people. A normative study taking into account age-dependent decline and sociobiological variables. Aging Clin Exp Res. 2002;14:117–31.

    Article  PubMed  Google Scholar 

  24. Caffarra P, Gardini S, Zonato F, Concari L, Dieci F, Copelli S, et al. Italian norms for the Freedman version of the Clock Drawing Test. J Clin Exp Neuropsychol. 2011;33:982–8.

    Article  PubMed  Google Scholar 

  25. Carlesimo GA, Caltagirone C, Gainotti G, Facida L, Gallassi R, Lorusso S, et al. The mental deterioration battery: normative data, diagnostic reliability and qualitative analyses of cognitive impairment. Eur Neurol. 1996;36:378–84.

    Article  CAS  PubMed  Google Scholar 

  26. Novelli G, Papagno C, Capitani E, Laiacona M, Cappa S, Vallar G. Tre test clinici di memoria verbale a lungo termine: Taratura su soggetti normali. Arch Psicol Neurol Psichiatr. 1986;2:278–96.

    Google Scholar 

  27. The Italian Group on the Neuropsychological Study of Aging. Italian standardization and classification of Neuropsychological tests. Ital J Neurol Sci. 1987;Suppl 8:1–120. 

  28. Orsini A, Grossi D, Capitani E, Laiacona M, Papagno C, Vallar G. Verbal and spatial immediate memory span: normative data from 1355 adults and 1112 children. Ital J Neurol Sci. 1987;8:537–48.

    Article  Google Scholar 

  29. Litvan I, Goldman JG, Tröster AI, Schmand BA, Weintraub D, Petersen RC, et al. Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord. 2012;27:349–56.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Varrone A, Asenbaum S, Vander Borght T, Booij J, Nobili F, Någren K, et al. EANM procedure guidelines for PET brain imaging using [ 18 F]FDG, version 2. Eur J Nucl Med Mol Imaging. 2009;36:2103–10.

    Article  PubMed  Google Scholar 

  31. Darcourt J, Booij J, Tatsch K, Varrone A, Vander Borght T, Kapucu ÖL, et al. EANM procedure guidelines for brain neurotransmission SPECT using 123 I-labelled dopamine transporter ligands, version 2. Eur J Nucl Med Mol Imaging. 2010;37:443–50.

    Article  CAS  PubMed  Google Scholar 

  32. Calvini P, Rodriguez G, Inguglia F, Mignone A, Guerra UP, Nobili F. The basal ganglia matching tools package for striatal uptake semi-quantification: description and validation. Eur J Nucl Med Mol Imaging. 2007;34:1240–53.

    Article  PubMed  Google Scholar 

  33. Friston KJ, Holmes AP, Worsley KJ, Poline J-P, Frith CD, Frackowiak RSJ. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp. 1994;2:189–210.

    Article  Google Scholar 

  34. Lee DS, Kang H, Kim H, Park H, Oh JS, Lee JS, et al. Metabolic connectivity by interregional correlation analysis using statistical parametric mapping (SPM) and FDG brain PET; Methodological development and patterns of metabolic connectivity in adults. Eur J Nucl Med Mol Imaging. 2008;35:1681–91.

    Article  PubMed  Google Scholar 

  35. Foulon C, Cerliani L, Kinkingnéhun S, Levy R, Rosso C, Urbanski M, et al. Advanced lesion symptom mapping analyses and implementation as BCBtoolkit. Gigascience. 2018;7:1–17.

    Article  PubMed  Google Scholar 

  36. Thiebaut De Schotten M, Dell’Acqua F, Ratiu P, Leslie A, Howells H, Cabanis E, et al. From phineas gage and monsieur leborgne to H.M.: revisiting disconnection syndromes. Cereb Cortex. 2015;25:4812–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thiebaut De Schotten M, Tomaiuolo F, Aiello M, Merola S, Silvetti M, Lecce F, et al. Damage to white matter pathways in subacute and chronic spatial neglect: a group study and 2 single-case studies with complete virtual “in vivo” tractography dissection. Cereb Cortex. 2014;24:691–706.

    Article  PubMed  Google Scholar 

  38. Byun JI, Kim HW, Kang H, Cha KS, Sunwoo JS, Shin JW, et al. Altered resting-state thalamo-occipital functional connectivity is associated with cognition in isolated rapid eye movement sleep behavior disorder. Sleep Med. 2020;69:198–203.

    Article  PubMed  Google Scholar 

  39. Campabadal A, Abos A, Segura B, Serradell M, Uribe C, Baggio HC, et al. Disruption of posterior brain functional connectivity and its relation to cognitive impairment in idiopathic REM sleep behavior disorder. NeuroImage Clin. 2020;25:102138.

    Article  CAS  PubMed  Google Scholar 

  40. Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D. Metabolic brain networks associated with cognitive function in Parkinson’s disease. Neuroimage. 2007;34:714–23.

    Article  PubMed  Google Scholar 

  41. Schindlbeck KA, Eidelberg D. Network imaging biomarkers: insights and clinical applications in Parkinson’s disease. Lancet Neurol. 2018;17:629–40.

    Article  PubMed  Google Scholar 

  42. Arnaldi D, Morbelli S, Brugnolo A, Girtler N, Picco A, Ferrara M, et al. Functional neuroimaging and clinical features of drug naive patients with de novo Parkinson’s disease and probable RBD. Parkinsonism Relat Disord. 2016;29:47–53.

    Article  PubMed  Google Scholar 

  43. Tuleasca C, Witjas T, Van de Ville D, Najdenovska E, Verger A, Girard N, et al. Right Brodmann area 18 predicts tremor arrest after Vim radiosurgery: a voxel-based morphometry study. Acta Neurochir. 2018;160:603–9.

    Article  PubMed  Google Scholar 

  44. Carrasco M. Visual attention: The past 25 years. Vis Res. 2011;51:1484–525.

    Article  PubMed  Google Scholar 

  45. Kim JH, Park K-Y, Seo SW, Na DL, Chung C-S, Lee KH, et al. Reversible verbal and visual memory deficits after left retrosplenial infarction. J Clin Neurol. 2007;3:62.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–83.

    Article  PubMed  Google Scholar 

  47. Nobili F, Arnaldi D, Campus C, Ferrara M, De Carli F, Brugnolo A, et al. Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson’s disease. Eur J Nucl Med Mol Imaging. 2011;38:2209–18.

    Article  PubMed  Google Scholar 

  48. Wu L, Liu F, Ge J, Zhao J, Tang Y, Yu W, et al. Wu Clinical characteristics of cognitive impairment in patients with Parkinson’s disease and its related pattern in 18F-FDG PET imaging. Hum Brain Mapp. 2018;39:4652–62.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hilker R, Thomas AV, Klein JC, Weisenbach S, Kalbe E, Burghaus L, et al. Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology. 2005;65:1716–22.

    Article  CAS  PubMed  Google Scholar 

  50. Gersel Stokholm M, Iranzo A, Østergaard K, Serradell M, Otto M, Bacher Svendsen K, et al. Cholinergic denervation in patients with idiopathic rapid eye movement sleep behaviour disorder. Eur J Neurol. 2020;27:644–52.

    Article  CAS  PubMed  Google Scholar 

  51. Massa F, Grisanti S, Brugnolo A, Doglione E, Orso B, Morbelli S, et al. The role of anterior prefrontal cortex in prospective memory: an exploratory FDG-PET study in early Alzheimer’s disease. Neurobiol Aging. 2020;96:117–127.

  52. Mak LE, Minuzzi L, MacQueen G, Hall G, Kennedy SH, Milev R. The default mode network in healthy individuals: a systematic review and meta-analysis. Brain Connect. 2017;7:25–33.

    Article  PubMed  Google Scholar 

  53. Bonanni L, Moretti D, Benussi A, Ferri L, Russo M, Carrarini C, et al. Hyperconnectivity in dementia is early and focal and wanes with progression. Cereb Cortex. 2020;bhaa209:1–9.

    Google Scholar 

  54. González-Redondo R, García-García D, Clavero P, Gasca-Salas C, García-Eulate R, Zubieta JL, et al. Grey matter hypometabolism and atrophy in Parkinson’s disease with cognitive impairment: A two-step process. Brain. 2014;137:2356–67.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Trošt M, Perovnik M, Pirtošek Z. Correlations of neuropsychological and metabolic brain changes in Parkinson’s disease and other α-synucleinopathies. Front Neurol. 2019;10:1–10.

    Article  Google Scholar 

  56. Nobili F, Campus C, Arnaldi D, De Carli F, Cabassi G, Brugnolo A, et al. Cognitive-nigrostriatal relationships in de novo, drug-naïve Parkinson’s disease patients: A [I-123]FP-CIT SPECT study. Mov Disord. 2010;25:35–43.

    Article  PubMed  Google Scholar 

  57. Provost JS, Hanganu A, Monchi O. Neuroimaging studies of the striatum in cognition Part I: Healthy individuals. Front Syst Neurosci. 2015;9:140.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Arnaldi D, Chincarini A, Hu MT, Sonka K, Boeve B, Miyamoto T, et al. Dopaminergic imaging and clinical predictors for phenoconversion of REM sleep behaviour disorder. Brain. 2020:awaa365. https://doi.org/10.1093/brain/awaa365 Online ahead of print.

  59. Huang Z, Jiang C, Li L, Xu Q, Ge J, Li M, et al. Correlations between dopaminergic dysfunction and abnormal metabolic network activity in REM sleep behavior disorder. J Cereb Blood Flow Metab. 2020;40:552–62.

    Article  PubMed  Google Scholar 

  60. Rojkova K, Volle E, Urbanski M, Humbert F, Dell’Acqua F, Thiebaut de Schotten M. Atlasing the frontal lobe connections and their variability due to age and education: a spherical deconvolution tractography study. Brain Struct Funct. 2015;221:1751–66.

    Article  PubMed  Google Scholar 

  61. Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage. 2002;17:77–94.

    Article  PubMed  Google Scholar 

  62. Catani M, Thiebaut de Schotten M. Atlas of human brain connections. Oxford, UK: Oxford University Press 2012.

  63. Arnaldi D, Antelmi E, St. Louis EK, Postuma RB, Arnulf I. Idiopathic REM sleep behavior disorder and neurodegenerative risk: to tell or not to tell to the patient? How to minimize the risk? Sleep Med Rev. Elsevier Ltd. 2017;36:82–95.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was developed within the framework of the DINOGMI Department of Excellence of MIUR 2018-2022 (legge 232 del 2016).

Funding

This work was supported by grant from Italian Ministry of Health - Italian Neuroscience network (RIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Mattioli.

Ethics declarations

Conflict of interest

Matteo Pardini receives research support from Novartis and Nutricia, received fees from Novartis, Merck, and Biogen. Silvia Morbelli received speaking honoraria from G.E. healthcare. Flavio Nobili received fees from BIAL for consultation, from G.E. healthcare for teaching talks, and from Roche for board participation. Dario Arnaldi received fees from Fidia for lectures and board participation. All other authors declare no competing interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. The study was approved by local ethics committee of the Istituto Nazionale per la Ricerca sul Cancro-IST, IRCCS San Martino polyclinic Hospital on May 31, 2013, (no. 703).

Informed consent

Informed consent was obtained from all individual participants included in the study. The results of all the performed exams have been provided to the patients. Patients have been informed of the risk of phenoconversion, according to the “full disclosure” approach [63] and information regarding the strategies to minimize the neurodegeneration risk were provided [63].

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology

Supplementary Information

ESM 1

(DOCX 561 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mattioli, P., Pardini, M., Famà, F. et al. Cuneus/precuneus as a central hub for brain functional connectivity of mild cognitive impairment in idiopathic REM sleep behavior patients. Eur J Nucl Med Mol Imaging 48, 2834–2845 (2021). https://doi.org/10.1007/s00259-021-05205-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-021-05205-6

Keywords

Navigation