Skip to main content

Advertisement

Log in

PET/CT radiomics signature of human papilloma virus association in oropharyngeal squamous cell carcinoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To devise, validate, and externally test PET/CT radiomics signatures for human papillomavirus (HPV) association in primary tumors and metastatic cervical lymph nodes of oropharyngeal squamous cell carcinoma (OPSCC).

Methods

We analyzed 435 primary tumors (326 for training, 109 for validation) and 741 metastatic cervical lymph nodes (518 for training, 223 for validation) using FDG-PET and non-contrast CT from a multi-institutional and multi-national cohort. Utilizing 1037 radiomics features per imaging modality and per lesion, we trained, optimized, and independently validated machine-learning classifiers for prediction of HPV association in primary tumors, lymph nodes, and combined “virtual” volumes of interest (VOI). PET-based models were additionally validated in an external cohort.

Results

Single-modality PET and CT final models yielded similar classification performance without significant difference in independent validation; however, models combining PET and CT features outperformed single-modality PET- or CT-based models, with receiver operating characteristic area under the curve (AUC) of 0.78, and 0.77 for prediction of HPV association using primary tumor lesion features, in cross-validation and independent validation, respectively. In the external PET-only validation dataset, final models achieved an AUC of 0.83 for a virtual VOI combining primary tumor and lymph nodes, and an AUC of 0.73 for a virtual VOI combining all lymph nodes.

Conclusion

We found that PET-based radiomics signatures yielded similar classification performance to CT-based models, with potential added value from combining PET- and CT-based radiomics for prediction of HPV status. While our results are promising, radiomics signatures may not yet substitute tissue sampling for clinical decision-making.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code availability

Our code is publicly available from our “OPSCC-Radiomics” GitHub-repository (https://github.com/nafets200/OPSCC-Radiomics).

Abbreviations

AJCC:

American Joint Committee on Cancer

AUC:

area under the receiver operating characteristic curve

CI:

confidence interval

CT:

computed tomography

HNSCC:

head-and-neck squamous cell carcinoma

HPV:

human papillomavirus

HU:

Hounsfield unit

ICC:

inter-/intra-class correlation coefficient

ISH:

in situ hybridization

LoG:

Laplacian of Gaussian

OPSCC:

oropharyngeal squamous cell carcinoma

PCR:

polymerase chain reaction

PET:

[18F]fluorodeoxyglucose positron emission tomography

GTV:

gross tumor volume

ROC:

receiver operating characteristic

SD:

standard deviation

TCIA:

The Cancer Imaging Archive

UICC:

Union for International Cancer Control

VOI:

volume of interest

References

  1. Gillison ML, Chaturvedi AK, Anderson WF, Fakhry C. Epidemiology of human papillomavirus-positive head and neck squamous cell carcinoma. J Clin Oncol. 2015;33:3235–42. https://doi.org/10.1200/JCO.2015.61.6995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ang KK, Harris J, Wheeler R, Weber R, Rosenthal DI, Nguyen-Tan PF, et al. Human papillomavirus and survival of patients with oropharyngeal cancer. N Engl J Med. 2010;363:24–35. https://doi.org/10.1056/NEJMoa0912217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Benson E, Li R, Eisele D, Fakhry C. The clinical impact of HPV tumor status upon head and neck squamous cell carcinomas. Oral Oncol. 2014;50:565–74. https://doi.org/10.1016/j.oraloncology.2013.09.008.

    Article  PubMed  Google Scholar 

  4. AJCC Cancer staging manual (8th edition): Springer International Publishing; 2017.

  5. TNM Classification of Malignant Tumours, 8th Edition. Wiley-Blackwell: Union for International Cancer Control; 2016.

  6. Lewis JS Jr, Beadle B, Bishop JA, Chernock RD, Colasacco C, Lacchetti C, et al. Human papillomavirus testing in head and neck carcinomas: guideline from the College of American Pathologists. Arch Pathol Lab Med. 2018;142:559–97. https://doi.org/10.5858/arpa.2017-0286-CP.

    Article  PubMed  Google Scholar 

  7. Gillies RJ, Kinahan PE, Hricak H. Radiomics: images are more than pictures, they are data. Radiology. 2016;278:563–77. https://doi.org/10.1148/radiol.2015151169.

    Article  PubMed  Google Scholar 

  8. Bogowicz M, Riesterer O, Ikenberg K, Stieb S, Moch H, Studer G, et al. Computed tomography radiomics predicts HPV status and local tumor control after definitive radiochemotherapy in head and neck squamous cell carcinoma. Int J Radiat Oncol Biol Phys. 2017;99:921–8. https://doi.org/10.1016/j.ijrobp.2017.06.002.

    Article  PubMed  Google Scholar 

  9. Yu K, Zhang Y, Yu Y, Huang C, Liu R, Li T, et al. Radiomic analysis in prediction of human papilloma virus status. Clin Transl Radiat Oncol. 2017;7:49–54. https://doi.org/10.1016/j.ctro.2017.10.001.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Mungai F, Verrone GB, Pietragalla M, Berti V, Addeo G, Desideri I, et al. CT assessment of tumor heterogeneity and the potential for the prediction of human papillomavirus status in oropharyngeal squamous cell carcinoma. Radiol Med. 2019;124:804–11. https://doi.org/10.1007/s11547-019-01028-6.

    Article  PubMed  Google Scholar 

  11. Zhu Y, Mohamed ASR, Lai SY, Yang S, Kanwar A, Wei L, et al. Imaging-genomic study of head and neck squamous cell carcinoma: associations between radiomic phenotypes and genomic mechanisms via integration of the Cancer Genome Atlas and the Cancer Imaging Archive. JCO Clin Cancer Inform. 2019;3:1–9. https://doi.org/10.1200/CCI.18.00073.

    Article  CAS  PubMed  Google Scholar 

  12. Elhalawani H, Mackin D, Ger RB, Lin T, Mohamed AS, Rock C, et al. FDG-PET imaging-derived radiomics correlates of human papillomavirus status: connecting the dots in the oropharyngeal cancer biology, metabolism, and imaging interplay. International Journal of Radiation Oncology • Biology • Physics. 2018;102:e262. doi:https://doi.org/10.1016/j.ijrobp.2018.07.856.

  13. Cheng NM, Chang JT, Huang CG, Tsan DL, Ng SH, Wang HM, et al. Prognostic value of pretreatment (1)(8)F-FDG PET/CT and human papillomavirus type 16 testing in locally advanced oropharyngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging. 2012;39:1673–84. https://doi.org/10.1007/s00259-012-2186-9.

    Article  PubMed  Google Scholar 

  14. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging. 2013;26:1045–57. https://doi.org/10.1007/s10278-013-9622-7.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vallieres M, Kay-Rivest E, Perrin LJ, Liem X, Furstoss C, Aerts H, et al. Radiomics strategies for risk assessment of tumour failure in head-and-neck cancer. Sci Rep. 2017;7:10117. https://doi.org/10.1038/s41598-017-10371-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vallières M, Kay-Rivest E, Perrin LJ, Liem X, Furstoss C, Khaouam N, et al. Data from head-neck-PET-CT. The Cancer Imaging Archive; 2017.

  17. Grossberg A, Mohamed A, Elhalawani H, Bennett W, Smith K, Nolan T, et al. Data from Head and Neck Cancer CT Atlas. The Cancer Imaging Archive; 2017.

  18. Grossberg AJ, Mohamed ASR, Elhalawani H, Bennett WC, Smith KE, Nolan TS, et al. Imaging and clinical data archive for head and neck squamous cell carcinoma patients treated with radiotherapy. Sci Data. 2018;5:180173. https://doi.org/10.1038/sdata.2018.173.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Zuley ML, Jarosz R, Kirk S, Lee Y, Colen R, Garcia K, et al. Radiology data from the Cancer Genome Atlas Head-Neck Squamous Cell Carcinoma [TCGA-HNSC] collection. The Cancer Imaging Archive; 2016.

  20. Wee L, Dekker A. Data from head-neck-Radiomics-HN1 [data set]. The Cancer Imaging Archive; 2019.

  21. Aerts HJ, Velazquez ER, Leijenaar RT, Parmar C, Grossmann P, Carvalho S, et al. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;5:4006. https://doi.org/10.1038/ncomms5006.

    Article  CAS  PubMed  Google Scholar 

  22. Ger RB, Craft DF, Mackin DS, Zhou S, Layman RR, Jones AK, et al. Practical guidelines for handling head and neck computed tomography artifacts for quantitative image analysis. Comput Med Imaging Graph. 2018;69:134–9. https://doi.org/10.1016/j.compmedimag.2018.09.002.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 4. Definition of volumes. Journal of the ICRU. 2010;10:41–53. https://doi.org/10.1093/jicru_ndq009.

  24. Fedorov A, Beichel R, Kalpathy-Cramer J, Finet J, Fillion-Robin JC, Pujol S, et al. 3D slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging. 2012;30:1323–41. https://doi.org/10.1016/j.mri.2012.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Britz-Cunningham SH, Millstine JW, Gerbaudo VH. Improved discrimination of benign and malignant lesions on FDG PET/CT, using comparative activity ratios to brain, basal ganglia, or cerebellum. Clin Nucl Med. 2008;33:681–7. https://doi.org/10.1097/RLU.0b013e318184b435.

    Article  PubMed  Google Scholar 

  26. Traverso A, Wee L, Dekker A, Gillies R. Repeatability and reproducibility of radiomic features: a systematic review. Int J Radiat Oncol Biol Phys. 2018;102:1143–58. https://doi.org/10.1016/j.ijrobp.2018.05.053.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Zwanenburg A, Leger S, Vallières M, Löck S. Image biomarker standardisation initiative. arXiv e-prints; 2016.

  28. Pyradiomics-community. Pyradiomics Documentation Release 2.1.2. 2018.

  29. Davnall F, Yip CS, Ljungqvist G, Selmi M, Ng F, Sanghera B, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice? Insights Imaging. 2012;3:573–89. https://doi.org/10.1007/s13244-012-0196-6.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Leijenaar RT, Nalbantov G, Carvalho S, van Elmpt WJ, Troost EG, Boellaard R, et al. The effect of SUV discretization in quantitative FDG-PET radiomics: the need for standardized methodology in tumor texture analysis. Sci Rep. 2015;5:11075. https://doi.org/10.1038/srep11075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lu L, Lv W, Jiang J, Ma J, Feng Q, Rahmim A, et al. Robustness of radiomic features in [(11)C]choline and [(18)F]FDG PET/CT imaging of nasopharyngeal carcinoma: impact of segmentation and discretization. Mol Imaging Biol. 2016;18:935–45. https://doi.org/10.1007/s11307-016-0973-6.

    Article  CAS  PubMed  Google Scholar 

  32. Leijenaar RT, Carvalho S, Velazquez ER, van Elmpt WJ, Parmar C, Hoekstra OS, et al. Stability of FDG-PET radiomics features: an integrated analysis of test-retest and inter-observer variability. Acta Oncol. 2013;52:1391–7. https://doi.org/10.3109/0284186X.2013.812798.

    Article  CAS  PubMed  Google Scholar 

  33. Koo TK, Li MY. A guideline of selecting and reporting intraclass correlation coefficients for reliability research. J Chiropr Med. 2016;15:155–63. https://doi.org/10.1016/j.jcm.2016.02.012.

    Article  PubMed  PubMed Central  Google Scholar 

  34. R Development Core team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2019.

  35. Revelle W. psych: procedures for psychological, psychometric, and personality research. Version 1.8.12 ed. Northwestern University, Evanston, Illinois, USA; 2018.

  36. Lu CF, Hsu FT, Hsieh KL, Kao YJ, Cheng SJ, Hsu JB, et al. Machine learning-based radiomics for molecular subtyping of gliomas. Clin Cancer Res. 2018;24:4429–36. https://doi.org/10.1158/1078-0432.CCR-17-3445.

    Article  PubMed  Google Scholar 

  37. Qiu W, Kuang H, Nair J, Assis Z, Najm M, McDougall C, et al. Radiomics-based intracranial thrombus features on CT and CTA predict recanalization with intravenous Alteplase in patients with acute ischemic stroke. AJNR Am J Neuroradiol. 2019;40:39–44. https://doi.org/10.3174/ajnr.A5918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhou L, Zhang Z, Chen YC, Zhao ZY, Yin XD, Jiang HB. A deep learning-based radiomics model for differentiating benign and malignant renal tumors. Transl Oncol. 2019;12:292–300. https://doi.org/10.1016/j.tranon.2018.10.012.

    Article  PubMed  Google Scholar 

  39. Wei L, Rosen B, Vallières M, Chotchutipan T, Mierzwa M, Eisbruch A, et al. Automatic recognition and analysis of metal streak artifacts in head and neck computed tomography for radiomics modeling. Phys Imaging Radiat Oncol. 2019;10:49–54. https://doi.org/10.1016/j.phro.2019.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Snoek J, Larochelle H, Adams RP. Practical Bayesian optimization of machine learning algorithms. Adv Neural Inf Proces Syst. 2012;25:2960–8.

    Google Scholar 

  41. Yan Y. rBayesian optimization: Bayesian optimization of hyperparameters. Version 1.1.0 ed; 2016.

  42. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–45.

    Article  CAS  PubMed  Google Scholar 

  43. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. https://doi.org/10.1186/1471-2105-12-77.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Payabvash S, Chan A, Jabehdar Maralani P, Malhotra A. Quantitative diffusion magnetic resonance imaging for prediction of human papillomavirus status in head and neck squamous-cell carcinoma: a systematic review and meta-analysis. Neuroradiol J. 2019;32:232–40. https://doi.org/10.1177/1971400919849808.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Liu F, Xi XP, Wang H, Han YQ, Xiao F, Hu Y, et al. PET/CT-guided dose-painting versus CT-based intensity modulated radiation therapy in locoregional advanced nasopharyngeal carcinoma. Radiat Oncol. 2017;12:15. https://doi.org/10.1186/s13014-016-0739-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Delouya G, Igidbashian L, Houle A, Belair M, Boucher L, Cohade C, et al. (1)(8)F-FDG-PET imaging in radiotherapy tumor volume delineation in treatment of head and neck cancer. Radiother Oncol. 2011;101:362–8. https://doi.org/10.1016/j.radonc.2011.07.025.

    Article  PubMed  Google Scholar 

  47. Forghani R, Savadjiev P, Chatterjee A, Muthukrishnan N, Reinhold C, Forghani B. Radiomics and artificial intelligence for biomarker and prediction model development in oncology. Comput Struct Biotechnol J. 2019;17:995–1008. https://doi.org/10.1016/j.csbj.2019.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Chen T, Guestrin C. XGBoost: a scalable tree boosting system. arXiv e-prints; 2016.

  49. Jin Y. Tree boosting with XGBoost—why does XGBoost win “every” machine learning competition? ; 2017.

    Google Scholar 

  50. Kim DW, Jang HY, Kim KW, Shin Y, Park SH. Design characteristics of studies reporting the performance of artificial intelligence algorithms for diagnostic analysis of medical images: results from recently published papers. Korean J Radiol. 2019;20:405–10. https://doi.org/10.3348/kjr.2019.0025.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Payabvash S. Quantitative diffusion magnetic resonance imaging in head and neck tumors. Quant Imaging Med Surg. 2018;8:1052–65. https://doi.org/10.21037/qims.2018.10.14.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ravanelli M, Grammatica A, Tononcelli E, Morello R, Leali M, Battocchio S, et al. Correlation between human papillomavirus status and quantitative MR imaging parameters including diffusion-weighted imaging and texture features in oropharyngeal carcinoma. AJNR Am J Neuroradiol. 2018;39:1878–83. https://doi.org/10.3174/ajnr.A5792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedmehdi Payabvash.

Ethics declarations

Conflict of interest

SPH has nothing to disclose. AM has nothing to disclose. TZ has nothing to disclose. PB has nothing to disclose. CR has nothing to disclose. KS has nothing to disclose. RF has acted as speaker and consultant for GE Healthcare and has a research agreement (beta tester) and support from GE Healthcare. RF is also a founder and stockholder of 4intelligent Inc., and a clinical research scholar (chercheur-boursier clinician) supported by the Fonds de recherche en santé du Québec (FRQS). ASK has nothing to disclose. BHK has nothing to disclose. BLJ has nothing to disclose. MLP has nothing to disclose. BB has nothing to disclose. SP has nothing to disclose.

Ethics approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the corresponding institutional research committees and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all participants in prospective trials. The Yale University ethics committee waived consent for retrospective analysis of patients’ information under IRB protocol #2000024295 (“Imaging biomarkers for tumor classifications in brain and head/neck tumors using radiomics and machine-learning algorithms”).

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Advanced Image Analyses (Radiomics and Artificial Intelligence)

Electronic supplementary material

ESM 1

(DOCX 842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, S.P., Mahajan, A., Zeevi, T. et al. PET/CT radiomics signature of human papilloma virus association in oropharyngeal squamous cell carcinoma. Eur J Nucl Med Mol Imaging 47, 2978–2991 (2020). https://doi.org/10.1007/s00259-020-04839-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-04839-2

Keywords

Navigation