Skip to main content

Advertisement

Log in

Relationship between PET metabolism and SEEG epileptogenicity in focal lesional epilepsy

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

This study aims to evaluate the performance of 18F-FDG PET for distinguishing the epileptogenic zone (EZ) from propagation and non-involved zones at brain area level, as defined using stereo-EEG (SEEG), in patients with pharmacoresistant epilepsy due to malformations of cortical development (MCD). Additionally, we seek to determine the relationship between 18F-FDG-PET data and post-surgical seizure outcome.

Methods

Thirty-eight patients with MCD were explored with 18F-FDG PET and SEEG. We compared PET metabolism of each patient to a control population of healthy subjects. Based on MRI and SEEG, we separated 4 distinct zones at individual level: lesional, epileptogenic non-lesional, propagation, and non-involved. Then, we analysed (1) difference of PET metabolism within these four distinct zones; (2) performance of PET in defining the EZ within the SEEG-sampled areas; and (3) relation between extension of PET hypometabolism and post-surgical seizure outcome.

Results

We found (1) a gradient of PET hypometabolism from non-involved to propagation, then to epileptogenic and lesional zones (p < 0.001); (2) good performance of PET in defining the EZ (AUC of ROC curve = 0.82); (3) poorer post-surgical prognosis associated with PET hypometabolism extension beyond SEEG sampling (p = 0.024).

Conclusion

18F-FDG-PET has good accuracy in determining EZ in patients with MCD even if the hypometabolism is not limited to the EZ. Furthermore, hypometabolic extension is unfavourably associated with post-surgical prognosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blumcke I, Spreafico R, Haaker G, Coras R, Kobow K, Bien CGCGCG, et al. Histopathological findings in brain tissue obtained during epilepsy surgery. N Engl J Med. 2017;377:1648–56.

    PubMed  Google Scholar 

  2. Cloppenborg T, May TW, Blümcke I, Grewe P, Hopf LJ, Kalbhenn T, et al. Trends in epilepsy surgery: stable surgical numbers despite increasing presurgical volumes. J Neurol Neurosurg Psychiatry. 2016:1–8.

  3. Baud MO, Perneger T, Attila R. European trends in epilepsy surgery. Neurology. 2018:1–12.

  4. Guerrini R, Duchowny M, Jayakar P, Krsek P, Kahane P, Tassi L, et al. Diagnostic methods and treatment options for focal cortical dysplasia. Epilepsia. 2015;56:1669–86.

    CAS  PubMed  Google Scholar 

  5. Rowland NC, Englot DJ, Cage TA, Sughrue ME, Barbaro NM, Chang EF. A meta-analysis of predictors of seizure freedom in the surgical management of focal cortical dysplasia. J Neurosurg. 2012;116:1035–41.

    PubMed  Google Scholar 

  6. Faramand AM, Barnes N, Harrison S, Gunny R, Jacques T, Tahir ZM, et al. Seizure and cognitive outcomes after resection of glioneuronal tumors in children. Epilepsia. 2017:1–9.

  7. Englot DJ, Berger MS, Barbaro NM, Chang EF. Factors associated with seizure freedom in the surgical resection of glioneuronal tumors. Epilepsia. 2012;53:51–7.

    PubMed  Google Scholar 

  8. Blümcke I, Thom M, Aronica E, Armstrong DD, Vinters HV, Palmini A, et al. The clinicopathologic spectrum of focal cortical dysplasias: a consensus classification proposed by an ad hoc Task Force of the ILAE Diagnostic Methods Commission. Epilepsia. 2011;52:158–74.

    PubMed  Google Scholar 

  9. Giulioni M, Marucci G, Pelliccia V, Gozzo F, Barba C, Didato G, et al. Epilepsy surgery of “low grade epilepsy associated neuroepithelial tumors”: a retrospective nationwide Italian study. Epilepsia. 2017:1–10.

  10. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. Springer Berlin Heidelberg. 2016;131:803–20.

    Google Scholar 

  11. Isnard J, Taussig D, Bartolomei F, Bourdillon P, Catenoix H, Chassoux F, et al. French guidelines on stereoelectroencephalography (SEEG). Elsevier Masson SAS: Neurophysiol Clin; 2017.

    Google Scholar 

  12. Salamon N, Kung J, Shaw SJ, Koo J, Koh S, Wu JY, et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 2008;71:1594–601.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Chassoux F, Landré E, Mellerio C, Turak B, Mann MW, Daumas-Duport C, et al. Type II focal cortical dysplasia: electroclinical phenotype and surgical outcome related to imaging. Epilepsia. 2012;53:349–58.

    PubMed  Google Scholar 

  14. Desarnaud S, Mellerio C, Semah F, Laurent A, Landre E, Devaux B, et al. 18F-FDG PET in drug-resistant epilepsy due to focal cortical dysplasia type 2: additional value of electroclinical data and coregistration with MRI (European Journal of Nuclear Medicine and Molecular Imaging, (2018), 45, 8, (1449-1460), 10. Eur J Nucl Med Mol Imaging 2018;45:1465.

  15. Rubí S, Setoain X, Donaire A, Bargalló N, Sanmartí F, Carreño M, et al. Validation of FDG-PET/MRI coregistration in nonlesional refractory childhood epilepsy. Epilepsia. 2011;52:2216–24.

    PubMed  Google Scholar 

  16. Lee SK, Choe G, Hong KS, Nam HW, Kim JY, Chung CK, et al. Neuroimaging findings of cortical dyslamination with cytomegaly. Epilepsia. 2001;42:850–6.

    CAS  PubMed  Google Scholar 

  17. Chugani HT, Shields WD, Shewmon DA, Olson DM, Phelps ME, Peacock WJ. Infantile spasms: I. PET identifies focal cortical dysgenesis in cryptogenic cases for surgical treatment. Ann Neurol. 1990;27:406–13.

    CAS  PubMed  Google Scholar 

  18. Kim YK, Lee DS, Lee SK, Chung CK, Chung J-K, Lee MC. (18)F-FDG PET in localization of frontal lobe epilepsy: comparison of visual and SPM analysis. J Nucl Med. 2002;43:1167–74.

    PubMed  Google Scholar 

  19. Kim YH, Kang HC, Kim DS, Kim SH, Shim KW, Kim HDH, et al. Neuroimaging in identifying focal cortical dysplasia and prognostic factors in pediatric and adolescent epilepsy surgery. Epilepsia. 2011;52:722–7.

    PubMed  Google Scholar 

  20. Casse R, Rowe CCCC, Newton M, Berlangieri SUSU, Scott AMAM. Positron emission tomography and positron emission. Mol Imaging Biol. 2004;6:72–3.

    Google Scholar 

  21. Kudr M, Krsek P, Marusic P, Tomasek M, Trnka J, Michalova K, et al. SISCOM and FDG-PET in patients with non-lesional extratemporal epilepsy: correlation with intracranial EEG, histology, and seizure outcome. Epileptic Disord. 2013;15:3–13.

    PubMed  Google Scholar 

  22. Juhász C, Chugani DC, Muzik O, Watson C, Shah J, Shah A, et al. Is epileptogenic cortex truly hypometabolic on interictal positron emission tomography? Ann Neurol. 2000;48:88–96.

    PubMed  Google Scholar 

  23. Lamarche F, Job AS, Deman P, Bhattacharjee M, Hoffmann D, Gallazzini-Crépin C, et al. Correlation of FDG-PET hypometabolism and SEEG epileptogenicity mapping in patients with drug-resistant focal epilepsy. Epilepsia. 2016;57:2045–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Alkonyi B, Juhász C, Muzik O, Asano E, Saporta A, Shah A, et al. Quantitative brain surface mapping of an electrophysiologic/metabolic mismatch in human neocortical epilepsy. Epilepsy Res. 2009;87:77–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Aubert S, Wendling F, Regis J, McGonigal A, Figarella-Branger D, Peragut JC, et al. Local and remote epileptogenicity in focal cortical dysplasias and neurodevelopmental tumours. Brain. 2009;132:3072–86.

    PubMed  Google Scholar 

  26. Lagarde S, Bonini F, McGonigal A, Chauvel P, Gavaret M, Scavarda D, et al. Seizure-onset patterns in focal cortical dysplasia and neurodevelopmental tumors: relationship with surgical prognosis and neuropathologic subtypes. Epilepsia. 2016;57:1426–35.

    PubMed  Google Scholar 

  27. Jayakar P, Gotman J, Harvey AS, Palmini A, Tassi L, Schomer D, et al. Diagnostic utility of invasive EEG for epilepsy surgery: indications, modalities, and techniques. Epilepsia. 2016;57:1735–47.

    PubMed  Google Scholar 

  28. Engel J. Update on surgical treatment of the epilepsies. Summary of the Second International Palm Desert Conference on the Surgical Treatment of the Epilepsies (1992). Neurology. 1993;43:1612–7.

    PubMed  Google Scholar 

  29. Lagarde S, Roehri N, Lambert I, Trebuchon A, McGonigal A, Carron R, et al. Interictal stereotactic-EEG functional connectivity in refractory focal epilepsies. Brain. 2018:1–15.

  30. Medina Villalon S, Paz R, Roehri N, Lagarde S, Pizzo F, Colombet B, et al. EpiTools, A software suite for presurgical brain mapping in epilepsy: intracerebral EEG. J Neurosci Methods. Elsevier B.V. 2018;303:7–15.

    CAS  Google Scholar 

  31. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.

    CAS  PubMed  Google Scholar 

  32. Besson P, Bandt SKK, Proix T, Lagarde S, Jirsa VK, Ranjeva J-PJ-P, et al. Anatomic consistencies across epilepsies: a stereotactic-EEG informed high-resolution structural connectivity study. Brain. 2017;140.

  33. Bartolomei F, Chauvel P, Wendling F. Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain. 2008;131:1818–30.

    PubMed  Google Scholar 

  34. Proix T, Bartolomei F, Guye M, Jirsa VK. Individual brain structure and modelling predict seizure propagation. Brain. 2017;140:641–54.

    PubMed  PubMed Central  Google Scholar 

  35. Lieberman MD, Cunningham WA. Type I and type II error concerns in fMRI research: re-balancing the scale. Soc Cogn Affect Neurosci. 2009.

  36. Fluss R, Faraggi D, Reiser B. Estimation of the Youden Index and its associated cutoff point. Biom J. 2005.

  37. Perkins NJ, Schisterman EF. The Youden index and the optimal cut-point corrected for measurement error. Biom J. 2005.

  38. Chassoux F, Rodrigo S, Semah F, Beuvon F, Landre E, Devaux B, et al. FDG-PET improves surgical outcome in negative MRI Taylor-type focal cortical dysplasias. Neurology. 2010;75:2168–75.

    CAS  PubMed  Google Scholar 

  39. Hong SB, Han HJ, Roh SY, Seo DW, Kim SE, Kim MH. Hypometabolism and interictal spikes during positron emission tomography scanning in temporal lobe epilepsy. Eur Neurol. 2002;48:65–70.

    CAS  PubMed  Google Scholar 

  40. Juhasz C, Chugani DC, Muzik O, Watson C, Shah J, Shah A, et al. Electroclinical correlates of flumazenil and fluorodeoxyglucose PET abnormalities in lesional epilepsy. Neurology. 2000;55:825–35.

    CAS  PubMed  Google Scholar 

  41. Tepmongkol S, Srikijvilaikul T, Vasavid P. Factors affecting bilateral temporal lobe hypometabolism on 18F-FDG PET brain scan in unilateral medial temporal lobe epilepsy. Epilepsy Behav. Elsevier Inc. 2013;29:386–9.

    Google Scholar 

  42. Hong SJ, Bernhardt BC, Schrader DS, Bernasconi N, Bernasconi A. Whole-brain MRI phenotyping in dysplasia-related frontal lobe epilepsy. Neurology. 2016;86:643–50.

    PubMed  PubMed Central  Google Scholar 

  43. Hong SJ, Lee HM, Gill R, Crane J, Sziklas V, Bernhardt BC, et al. A connectome-based mechanistic model of focal cortical dysplasia. Brain. 2019;142:688–99.

    PubMed  PubMed Central  Google Scholar 

  44. Krsek P, Maton B, Korman B, Pacheco-Jacome E, Jayakar P, Dunoyer C, et al. Different features of histopathological subtypes of pediatric focal cortical dysplasia. Ann Neurol. 2008;63:758–69.

    PubMed  Google Scholar 

  45. Chassoux F, Artiges E, Semah F, Laurent A, Landré E, Turak B, et al. 18 F-FDG-PET patterns of surgical success and failure in mesial temporal lobe epilepsy. Neurology. 2017;88:1045–53.

    CAS  PubMed  Google Scholar 

  46. Cahill V, Sinclair B, Malpas CB, McIntosh AM, Chen Z, Vivash LE, et al. Metabolic patterns and seizure outcomes following anterior temporal lobectomy. Ann Neurol. 2019:1–10.

  47. Higo T, Sugano H, Nakajima M, Karagiozov K, Iimura Y, Suzuki M, et al. The predictive value of FDG-PET with 3D-SSP for surgical outcomes in patients with temporal lobe epilepsy. Seizure BEA Trading Ltd. 2016;41:127–33.

    Google Scholar 

  48. Wong CH, Bleasel A, Wen L, Eberl S, Byth K, Fulham M, et al. Relationship between preoperative hypometabolism and surgical outcome in neocortical epilepsy surgery. Epilepsia. 2012;53:1333–40.

    PubMed  Google Scholar 

  49. Besson P, Dinkelacker V, Valabregue R, Thivard L, Leclerc X, Baulac M, et al. Structural connectivity differences in left and right temporal lobe epilepsy. Neuroimage. Elsevier Inc. 2014;100:135–44.

    Google Scholar 

  50. Keller SS, Glenn GR, Weber B, Kreilkamp BAK, Jensen JH, Helpern JA, et al. Preoperative automated fibre quantification predicts postoperative seizure outcome in temporal lobe epilepsy. Brain. 2017;140:68–82.

    PubMed  Google Scholar 

  51. Baker NL, Nesland T, Drane DL, Bonilha L, Breedlove J, Lin JJ, et al. The brain connectome as a personalized biomarker of seizure outcomes after temporal lobectomy the brain connectome as a personalized biomarker of seizure outcomes after temporal lobectomy. Neurology. 2015:1–8.

  52. He X, Doucet GE, Pustina D, Sperling MR, Sharan AD, Tracy JI. Presurgical thalamic hubness predicts surgical outcome in temporal lobe epilepsy. Neurology. 2017;88:2285–93.

    PubMed  Google Scholar 

  53. Bonilha L, Nesland T, Martz GU, Joseph JE, Spampinato MV, Edwards JC, et al. Medial temporal lobe epilepsy is associated with neuronal fibre loss and paradoxical increase in structural connectivity of limbic structures. J Neurol Neurosurg Psychiatry. 2012;83:903–9.

    PubMed  PubMed Central  Google Scholar 

  54. Bonilha L, Helpern JA, Sainju R, Nesland T, Edwards JC, Glazier SS, et al. Presurgical connectome and postsurgical seizure control in temporal lobe epilepsy. Neurology. 2013;81:1704–10.

    PubMed  PubMed Central  Google Scholar 

  55. Bernhardt BC, Hong S, Bernasconi A, Bernasconi N. Imaging structural and functional brain networks in temporal lobe epilepsy. Front Hum Neurosci. 2013;7:1–14.

    Google Scholar 

  56. Halac G, Delil S, Zafer D, Isler C, Uzan M, Comunoglu N, et al. Compatibility of MRI and FDG-PET findings with histopathological results in patients with focal cortical dysplasia. Seizure. 2017;45:80–6.

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Figarella-Branger for the reviewing of histological data. We thank Prof. Patrick Chauvel, Prof. Martine Gavaret, Dr. Francesca Bonini, Dr. Lisa Vaugier, Dr. Francesca Pizzo, Dr. Sandrine Aubert, Dr. Geraldine Daquin, Dr. Nathalie Villeneuve and Dr. Anne Lepine (Marseille), for the clinical management of some included patients. We thank Prof. Henry Dufour for surgical procedures and Prof. Jean Régis for SEEG procedures, in some of the selected patients.

Funding

This work has been carried out within the FHU EPINEXT and DHU-Imaging with the support of the A*MIDEX project (ANR-11-IDEX-0001-02) funded by the “Investissements d’Avenir” French Government program managed by the French National Research Agency (ANR). Part of this work was funded by a joint Agence Nationale de la Recherche (ANR) and Direction Génerale de l’Offre de Santé (DGOS) under grant “VIBRATIONS” ANR-13-PRTS-0011-01.

Author information

Authors and Affiliations

Authors

Contributions

Stanislas Lagarde, Fabrice Bartolomei and Eric Guedj participated in the Conceptualization and the Methodology of this study.

Stanislas Lagarde, Mohamed Boucekine, Laurent Boyer, Agnes Trebuchon, Romain Carron, Didier Scavarda, Mahtieu Milh, Aileen McGonigal, Fabrice Bartolomei and Eric Guedj participated in the Investigation and the Formal analysis.

Stanislas Lagarde, Mohamed Boucekine, Laurent Boyer, Agnes Trebuchon, Romain Carron, Didier Scavarda, Mahtieu Milh, Aileen McGonigal, Fabrice Bartolomei and Eric Guedj participated in the writing—review & editing.

Corresponding author

Correspondence to Eric Guedj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee (French Institute of Health (IRB15226)) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lagarde, S., Boucekine, M., McGonigal, A. et al. Relationship between PET metabolism and SEEG epileptogenicity in focal lesional epilepsy. Eur J Nucl Med Mol Imaging 47, 3130–3142 (2020). https://doi.org/10.1007/s00259-020-04791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-04791-1

Keywords

Navigation