Skip to main content

Advertisement

Log in

A phase IIa trial of molecular radiotherapy with 177-lutetium DOTATATE in children with primary refractory or relapsed high-risk neuroblastoma

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The objective of this phase IIa, open-label, single-centre, single-arm, two-stage clinical trial was to evaluate the safety and activity of 177-lutetium DOTATATE (LuDO) molecular radiotherapy in neuroblastoma.

Methods

Children with relapsed or refractory metastatic high-risk neuroblastoma were treated with up to four courses of LuDO. The administered activity was 75 to 100 MBq kg−1 per course, spaced at 8- to 12-week intervals. Outcomes were assessed by the International Neuroblastoma Response Criteria (primary outcome), progression-free survival (PFS), and overall survival (OS).

Results

The trial recruited 21 patients; eight received the planned four courses. There was dose-limiting haematologic toxicity in one case, but no other significant haematologic or renal toxicities. None of 14 evaluable patients had an objective response at 1 month after completion of treatment (Wilson 90% CI 0.0, 0.16; and 95% CI is 0.0, 0.22). The trial did not therefore proceed to the second stage. The median PFS was 2.96 months (95% CI 1.71, 7.66), and the median OS was 13.0 months (95% CI 2.99, 21.52).

Conclusion

In the absence of any objective responses, the use of LuDO as a single agent at the dose schedule used in this study is not recommended for the treatment of neuroblastoma. There are several reasons why this treatment schedule may not have resulted in objective responses, and as other studies do show benefit, the treatment should not be regarded as being of no value. Further trials designed to overcome this schedule’s limitations are required.

Trial registration

ISRCTN98918118; URL: https://www.isrctn.com/search?q=98918118

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

AE:

Adverse event

CT:

Computed tomography

CTCAE:

Common Terminology Criteria for Adverse Events

FDG:

Fluorodeoxyglucose

GaDO:

68-Gallium DOTATATE

GFR:

Glomerular filtration rate

Gy:

Gray

h:

Hour

INRC:

International Neuroblastoma Response Criteria

kg:

Kilogram

kVp:

Kilovoltage peak

l:

Litre

L:

Levo

LuDO:

177-Lutetium DOTATATE

m:

Metre

mA:

Milliamperes

MBq:

Megabecquerel

mIBG:

Meta-iodobenzylguanidine

MRI:

Magnetic resonance imaging

OS:

Overall survival

PET:

Positron emission tomography

PFS:

Progression-free survival

PRRT:

Peptide receptor radionuclide therapy

SAE:

Serious adverse event

SIOPEN:

International Society of Paediatric Oncology European Neuroblastoma clinical research group

SPECT:

Single-photon emission computed tomography

SUVmax :

Maximum standardized uptake value

UK:

United Kingdom

USA:

United States of America

USAN:

United States Adopted Name

References

  1. Gains J, Mandeville H, Cork N, et al. Ten challenges in the management of neuroblastoma. Future Oncol. 2012;8:839–58.

    CAS  PubMed  Google Scholar 

  2. Moroz V, Machin D, Faldum A, et al. Changes over three decades in outcome and the prognostic influence of age-at-diagnosis in young patients with neuroblastoma: a report from the International Neuroblastoma Risk Group Project. Eur J Cancer. 2011;47:561–71.

    PubMed  Google Scholar 

  3. Monclair T, Brodeur GM, Ambros PF, et al. The International Neuroblastoma Risk Group (INRG) staging system: an INRG Task Force report. J Clin Oncol. 2009;27:298–303.

    PubMed  PubMed Central  Google Scholar 

  4. Bagatell R, Beck-Popovic M, London WB, et al. Significance of MYCN amplification in international neuroblastoma staging system stage 1 and 2 neuroblastoma: a report from the International Neuroblastoma Risk Group database. J Clin Oncol. 2009;27:365–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Cohn SL, Pearson ADJ, London WB, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27:289–97.

    PubMed  PubMed Central  Google Scholar 

  6. Pearson AD, Pinkerton CR, Lewis IJ, et al. High-dose rapid and standard induction chemotherapy for patients aged over 1 year with stage 4 neuroblastoma: a randomised trial. Lancet Oncol. 2008;9:247–56.

    CAS  PubMed  Google Scholar 

  7. Matthay KK, Reynolds CP, Seeger RC, et al. Long-term results for children with high-risk neuroblastoma treated on a randomized trial of myeloablative therapy followed by 13-cis-retinoic acid: a Children’s Oncology Group study. J Clin Oncol. 2009;27:1007–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Ladenstein R, Pötschger U, Pearson ADJ, et al. Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): an international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol. 2017;18:500–14.

    CAS  PubMed  Google Scholar 

  9. Yu AL, Gilman AL, Ozkaynak MF, et al. Anti-GD2 antibody with GM-CSF, interleukin-2, and isotretinoin for neuroblastoma. N Engl J Med. 2010;363:1324–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Ladenstein R, Pötschger U, Valteau-Couanet D, et al. Interleukin 2 with anti-GD2 antibody ch14.18/CHO (dinutuximab beta) in patients with high-risk neuroblastoma (HR-NBL1/SIOPEN): a multicentre, randomised, phase 3 trial. Lancet Oncol. 2018. https://doi.org/10.1016/S1470-2045(18)30578-3.

  11. von Allmen D, Davidoff AM, London WB, et al. Impact of extent of resection on local control and survival in patients from the COG A3973 study with high-risk neuroblastoma. J Clin Oncol. 2017;35:208–16.

    Google Scholar 

  12. Arumugam S, Manning-Cork NJ, Gains JE, et al. The evidence for external beam radiotherapy in high-risk neuroblastoma of childhood: a systematic review. Clin Oncol (R Coll Radiol). 2018. https://doi.org/10.1016/j.clon.2018.11.031.

  13. Ladenstein R, Valteau-Couanet D, Brock P, et al. Randomized trial of prophylactic granulocyte colony-stimulating factor during rapid COJEC induction in pediatric patients with high-risk neuroblastoma: the European HR-NBL1/SIOPEN study. J Clin Oncol. 2010;28:3516–24.

    CAS  PubMed  Google Scholar 

  14. Basta NO, Halliday GC, Makin G, et al. Factors associated with recurrence and survival length following relapse in patients with neuroblastoma. Br J Cancer. 2016;115:1048–57.

    PubMed  PubMed Central  Google Scholar 

  15. Wheldon TE, Livingstone A, Wilson L, et al. The radiosensitivity of human neuroblastoma cells estimated from regrowth curves of multicellular tumour spheroids. Br J Radiol. 1985;58:661–4.

    CAS  PubMed  Google Scholar 

  16. Gaze MN, Boterberg T, Dieckmann K, et al. Results of a quality assurance review of external beam radiation therapy in the International Society of Paediatric Oncology (Europe) Neuroblastoma Group’s High-risk Neuroblastoma Trial: a SIOPEN study. Int J Radiat Oncol Biol Phys. 2013;85:170–4.

    PubMed  Google Scholar 

  17. Gaze MN, Gains JE, Walker C, et al. Optimization of molecular radiotherapy with [131I]-meta iodobenzylguanidine for high-risk neuroblastoma. Q J Nucl Med Mol Imaging. 2013;57:66–78.

    CAS  PubMed  Google Scholar 

  18. Glowniak JV, Kilty JE, Amara SG, et al. Evaluation of metaiodobenzylguanidine uptake by the norepinephrine, dopamine and serotonin transporters. J Nucl Med. 1993;34:1140–6.

    CAS  PubMed  Google Scholar 

  19. Wilson JS, Gains JE, Moroz V, et al. A systematic review of 131I-meta iodobenzylguanidine molecular radiotherapy for neuroblastoma. Eur J Cancer. 2014;50:801–15.

    CAS  PubMed  Google Scholar 

  20. Kwekkeboom DJ, Mueller-Brand J, Paganelli G, et al. Overview of results of peptide receptor radionuclide therapy with 3 radiolabeled somatostatin analogs. J Nucl Med. 2005;46:62S–6S.

    CAS  PubMed  Google Scholar 

  21. Bodei L, Mueller-Brand J, Baum RP, et al. The joint IAEA, EANM, and SNMMI practical guidance on peptide receptor radionuclide therapy (PRRNT) in neuroendocrine tumours. Eur J Nucl Med Mol Imaging. 2013;40:800–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 trial of 177Lu-Dotatate for midgut neuroendocrine tumors. N Engl J Med Jan. 2017;376:125–35.

    CAS  Google Scholar 

  23. Strosberg J, Wolin E, Chasen B, et al. Health-related quality of life in patients with progressive midgut neuroendocrine tumors treated with 177Lu-Dotatate in the phase III NETTER-1 trial. J Clin Oncol. 2018;36:2578–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bodei L, Kidd M, Paganelli G, et al. Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors. Eur J Nucl Med Mol Imaging. 2015;42:5–19.

    CAS  PubMed  Google Scholar 

  25. Gains JE, Sebire NJ, Moroz V, et al. Immunohistochemical evaluation of molecular radiotherapy target expression in neuroblastoma tissue. Eur J Nucl Med Mol Imaging. 2018;45:402–11.

    CAS  PubMed  Google Scholar 

  26. Gains JE, Bomanji JB, Fersht NL, et al. 177Lu-DOTATATE molecular radiotherapy for childhood neuroblastoma. J Nucl Med. 2011;52:1041–7.

    PubMed  Google Scholar 

  27. Alexander N, Vali R, Ahmadzadehfar H, et al. The role of radiolabeled DOTA-conjugated peptides for imaging and treatment of childhood neuroblastoma. Curr Radiopharm. 2018;11:14–21.

    CAS  PubMed  Google Scholar 

  28. Gains JE, Walker C, Sullivan TM, et al. Radiation exposure to comforters and carers during paediatric molecular radiotherapy. Pediatr Blood Cancer. 2015;62:235–9.

    CAS  PubMed  Google Scholar 

  29. Lewington V, Lambert B, Poetschger U, et al. 123I-mIBG scintigraphy in neuroblastoma: development of a SIOPEN semi-quantitative reporting method by an international panel. Eur J Nucl Med Mol Imaging. 2017;44:234–41.

    CAS  PubMed  Google Scholar 

  30. Schwartz GJ, Work DF. Measurement and estimation of GFR in children and adolescents. Clin J Am Soc Nephrol. 2009;4:1832–43.

    PubMed  Google Scholar 

  31. Buckley SE, Chittenden SJ, Saran FH, et al. Whole-body dosimetry for individualized treatment planning of 131I-MIBG radionuclide therapy for neuroblastoma. J Nucl Med. 2009;50:1518–24.

    CAS  PubMed  Google Scholar 

  32. Trieu M, DuBois SG, Pon E, et al. Impact of whole-body radiation dose on response and toxicity in patients with neuroblastoma after therapy with 131 I-metaiodobenzylguanidine (MIBG). Pediatr Blood Cancer. 2016;63:436–42.

    CAS  PubMed  Google Scholar 

  33. Brodeur GM, Seeger RC, Barrett A, et al. International criteria for diagnosis, staging, and response to treatment in patients with neuroblastoma. J Clin Oncol. 1988;6:1874–81.

    CAS  PubMed  Google Scholar 

  34. Brodeur GM, Pritchard J, Berthold F, et al. Revisions of the international criteria for neuroblastoma diagnosis, staging, and response to treatment. J Clin Oncol. 1993;11:1466–77.

    CAS  PubMed  Google Scholar 

  35. Park JR, Bagatell R, Cohn SL, et al. Revisions to the International Neuroblastoma Response Criteria: a consensus statement from the National Cancer Institute Clinical Trials Planning Meeting. J Clin Oncol. 2017;35:2580–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Simon R. Optimal two-stage designs for phase II clinical trials. Control Clin Trials. 1989;10:1–10.

    CAS  PubMed  Google Scholar 

  37. Machin D, Campbell MJ, Tan SB, et al. Sample size tables for clinical studies (ed 3). Chichester: Wiley-Blackwell; 2009.

    Google Scholar 

  38. Gaze MN, Gains JE, Bomanji JB. Current issues in molecular radiotherapy in children. In: Mansi L, Lopci E, Cuccurullo V, Chiti A, editors. Clinical nuclear medicine in pediatrics. Basel: Springer; 2016. p. 29–49.

    Google Scholar 

  39. Kong G, Hofman MS, Murray WK, et al. Initial experience with gallium-68 DOTA-octreotate PET/CT and peptide receptor radionuclide therapy for pediatric patients with refractory metastatic neuroblastoma. J Pediatr Hematol Oncol. 2016;38:87–96.

    CAS  PubMed  Google Scholar 

  40. Moreno L, Rubie H, Varo A, et al. Outcome of children with relapsed or refractory neuroblastoma: a meta-analysis of ITCC/SIOPEN European phase II clinical trials. Pediatr Blood Cancer. 2017;64:25–31.

    CAS  PubMed  Google Scholar 

  41. Zhou MJ, Doral MY, DuBois SG, et al. Different outcomes for relapsed versus refractory neuroblastoma after therapy with (131)I-metaiodobenzylguanidine ((131)I-MIBG). Eur J Cancer. 2015;51:2465–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Gaze MN, Chang YC, Flux GD, et al. Feasibility of dosimetry-based high-dose 131I-meta-iodobenzylguanidine with topotecan as a radiosensitizer in children with metastatic neuroblastoma. Cancer Biother Radiopharm. 2005;20:195–9.

    CAS  PubMed  Google Scholar 

  43. Buckley SE, Saran FH, Gaze MN, et al. Dosimetry for fractionated (131)I-mIBG therapies in patients with primary resistant high-risk neuroblastoma: preliminary results. Cancer Biother Radiopharm. 2007;22:105–12.

    CAS  PubMed  Google Scholar 

  44. McCluskey AG, Boyd M, Gaze MN, et al. [131I]MIBG and topotecan: a rationale for combination therapy for neuroblastoma. Cancer Lett. 2005;228:221–7.

    CAS  PubMed  Google Scholar 

  45. McCluskey AG, Mairs RJ, Tesson M, et al. Inhibition of poly(ADP-Ribose) polymerase enhances the toxicity of 131I-metaiodobenzylguanidine/topotecan combination therapy to cells and xenografts that express the noradrenaline transporter. J Nucl Med. 2012;53:1146–54.

    CAS  PubMed  Google Scholar 

  46. Tesson M, Vasan R, Hock A, et al. An evaluation in vitro of the efficacy of nutlin-3 and topotecan in combination with 177Lu-DOTATATE for the treatment of neuroblastoma. Oncotarget. 2018;9:29082–96.

    PubMed  PubMed Central  Google Scholar 

  47. https://clinicaltrials.gov/ct2/show/NCT04023331?term=sartate&rank=2 [last accessed 30 September 2019].

Download references

Funding

This trial was funded by the Cancer Research UK (reference C17807/A14091) and Joining Against Cancer in Kids, and supported by researchers at the National Institute for Health Research University College London Hospitals Biomedical Research Centre.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: Jennifer E. Gains, Veronica Moroz, Matthew D. Aldridge, Jamshed B. Bomanji, Keith Wheatley, Mark N. Gaze

Clinical care of patients: Jennifer E. Gains, Connie Peet, Matthew D. Aldridge, S Wan, Jamshed B. Bomanji, Mark N. Gaze

Collection and assembly of data: Connie Peet, Matthew D. Aldridge, Jennifer Laidler

Data analysis and interpretation: Jennifer E. Gains, Veronica Moroz, Simon Wan, Jamshed B. Bomanji, Matthew D. Aldridge, Keith Wheatley, Mark N. Gaze

Manuscript writing: all authors

Final approval of the manuscript: all authors

Accountable for all aspects of work: all authors

Corresponding author

Correspondence to Mark N. Gaze.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gains, J.E., Moroz, V., Aldridge, M.D. et al. A phase IIa trial of molecular radiotherapy with 177-lutetium DOTATATE in children with primary refractory or relapsed high-risk neuroblastoma. Eur J Nucl Med Mol Imaging 47, 2348–2357 (2020). https://doi.org/10.1007/s00259-020-04741-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-020-04741-x

Keywords

Navigation