Skip to main content
Log in

Heart rate reserve during pharmacological stress is a significant negative predictor of impaired coronary flow reserve in women

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Evidence to date has failed to adequately explore determinants of cardiovascular risk in women with coronary microvascular dysfunction (CMVD). Heart rate responses to adenosine mirror autonomic activity and may carry important prognostic information for the diagnosis of CMVD.

Methods

Hemodynamic changes during adenosine stress were analyzed in a propensity-matched cohort of 404 patients (202 women, mean age 65.9 ± 11.0) who underwent clinically indicated myocardial perfusion 13N-ammonia Positron-Emission-Tomography (PET) at our institution between September 2013 and May 2017.

Results

Baseline heart rate (HR) was significantly higher in patients with abnormal coronary flow reserve (CFR, p < 0.001 vs normal CFR). Accordingly, a blunted HR response to adenosine (=reduced heart rate reserve, %HRR) was seen in patients with abnormal CFR, with a most pronounced effect being observed in female patients free of myocardial ischemia (45.9 ± 34.9 vs 26.5 ± 18.0, p < 0.001 in women and 29.1 ± 16.9 vs 24.3 ± 21.7, p = 0.15 in men). Hence, a fully-adjusted multivariate logistic regression model identified HRR as the strongest negative predictor of reduced CFR in women free of myocardial ischemia, but not in men. Accordingly, receiver operating characteristics (ROC) curves for the presence of reduced CFR revealed that a %HRR <35 was a powerful predictor for abnormal CFR with a sensitivity of 81% and a specificity of 60% in women.

Conclusion

A blunted HRR <35% is associated with abnormal CFR in women. Taking into account HR responses during stress test in women may help to risk stratify the heterogeneous female population of patients with non-obstructive coronary artery disease (CAD).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Townsend N, Wilson L, Bhatnagar P, Wickramasinghe K, Rayner M, Nichols M. Cardiovascular disease in Europe: epidemiological update 2016. Eur Heart J. 2016;37(42):3232–45.

    Article  PubMed  Google Scholar 

  2. Wilmot KA, O’Flaherty M, Capewell S, Ford ES, Vaccarino V. Coronary heart disease mortality declines in the United States from 1979 through 2011: evidence for stagnation in young adults, especially women. Circulation. 2015;132(11):997–1002.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Mieres JH, Shaw LJ, Arai A, Budoff MJ, Flamm SD, Hundley WG, et al. Role of noninvasive testing in the clinical evaluation of women with suspected coronary artery disease: consensus statement from the cardiac imaging committee, council on clinical cardiology, and the cardiovascular imaging and intervention committee, council on cardiovascular radiology and intervention, American Heart Association. Circulation. 2005;111(5):682–96.

    Article  PubMed  Google Scholar 

  4. Baldassarre LA, Raman SV, Min JK, Mieres JH, Gulati M, Wenger NK, et al. Noninvasive imaging to evaluate women with stable ischemic heart disease. J Am Coll Cardiol Img. 2016;9(4):421–35.

    Article  Google Scholar 

  5. Gianrossi R, Detrano R, Mulvihill D, Lehmann K, Dubach P, Colombo A, et al. Exercise-induced ST depression in the diagnosis of coronary artery disease. A meta-analysis. Circulation. 1989;80(1):87–98.

    Article  CAS  PubMed  Google Scholar 

  6. Botvinick EH. Breast attenuation artifacts in Tl-201 scintigraphy. Radiology. 1988;168(3):878–9.

    CAS  PubMed  Google Scholar 

  7. Hansen CL, Crabbe D, Rubin S. Lower diagnostic accuracy of thallium-201 SPECT myocardial perfusion imaging in women: an effect of smaller chamber size. J Am Coll Cardiol. 1996;28(5):1214–9.

    Article  CAS  PubMed  Google Scholar 

  8. Sanders GD, Patel MR, Chatterjee R, Ross AK, Bastian LA, Coeytaux RR, et al. AHRQ future research needs papers. Noninvasive technologies for the diagnosis of coronary artery disease in women: future research needs: identification of future research needs from comparative effectiveness review no 58. Rockville: Agency for Healthcare Research and Quality (US); 2013.

    Google Scholar 

  9. Pepine CJ, Ferdinand KC, Shaw LJ, Light-McGroary KA, Shah RU, Gulati M, et al. Emergence of nonobstructive coronary artery disease: a woman’s problem and need for change in definition on angiography. J Am Coll Cardiol. 2015;66(17):1918–33.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Murthy VL, Naya M, Taqueti VR, Foster CR, Gaber M, Hainer J, et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129(24):2518–27.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pepine CJ, Anderson RD, Sharaf BL, Reis SE, Smith KM, Handberg EM, et al. Coronary microvascular reactivity to adenosine predicts adverse outcome in women evaluated for suspected ischemia results from the national heart, lung and blood institute WISE (women’s ischemia syndrome evaluation) study. J Am Coll Cardiol. 2010;55(25):2825–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sedlak TL, Lee M, Izadnegahdar M, Merz CN, Gao M, Humphries KH. Sex differences in clinical outcomes in patients with stable angina and no obstructive coronary artery disease. Am Heart J. 2013;166(1):38–44.

    Article  PubMed  Google Scholar 

  13. Dean J, Cruz SD, Mehta PK, Merz CN. Coronary microvascular dysfunction: sex-specific risk, diagnosis, and therapy. Nat Rev Cardiol. 2015;12(7):406–14.

    Article  PubMed  Google Scholar 

  14. Fiechter M, Gebhard C, Ghadri JR, Fuchs TA, Pazhenkottil AP, Nkoulou RN, et al. Myocardial perfusion imaging with 13N-ammonia PET is a strong predictor for outcome. Int J Cardiol. 2013;167(3):1023–6.

    Article  PubMed  Google Scholar 

  15. Herzog BA, Husmann L, Valenta I, Gaemperli O, Siegrist PT, Tay FM, et al. Long-term prognostic value of 13N-ammonia myocardial perfusion positron emission tomography added value of coronary flow reserve. J Am Coll Cardiol. 2009;54(2):150–6.

    Article  PubMed  Google Scholar 

  16. Gebhard C, Fiechter M, Herzog BA, Lohmann C, Bengs S, Treyer V, et al. Sex differences in the long-term prognostic value of (13)N-ammonia myocardial perfusion positron emission tomography. Eur J Nucl Med Mol Imaging. 2018;45(11):1964–1974.

  17. Gebhard C, Messerli M, Lohmann C, Treyer V, Bengs S, Benz DC, et al. Sex and age differences in the association of heart rate responses to adenosine and myocardial ischemia in patients undergoing myocardial perfusion imaging. J Nucl Cardiol. 2018 Apr 23. https://doi.org/10.1007/s12350-018-1276-x.

  18. Dorbala S, Di Carli MF, Delbeke D, Abbara S, DePuey EG, Dilsizian V, et al. SNMMI/ASNC/SCCT guideline for cardiac SPECT/CT and PET/CT 1.0. J Nucl Med. 2013;54(8):1485–507.

    Article  PubMed  Google Scholar 

  19. Reyes E, Stirrup J, Roughton M, D’Souza S, Underwood SR, Anagnostopoulos C. Attenuation of adenosine-induced myocardial perfusion heterogeneity by atenolol and other cardioselective beta-adrenoceptor blockers: a crossover myocardial perfusion imaging study. J Nucl Med. 2010;51(7):1036–43.

    Article  PubMed  Google Scholar 

  20. Hendel RC, Berman DS, Di Carli MF, Heidenreich PA, Henkin RE, Pellikka PA, et al. ACCF/ASNC/ACR/AHA/ASE/SCCT/SCMR/SNM 2009 appropriate use criteria for cardiac radionuclide imaging: a report of the American College of Cardiology Foundation appropriate use criteria task force, the American Society of Nuclear Cardiology, the American College of Radiology, the American Heart Association, the American Society of Echocardiography, the Society of Cardiovascular Computed Tomography, the Society for Cardiovascular Magnetic Resonance, and the Society of Nuclear Medicine. Circulation. 2009;119(22):e561–87.

    PubMed  Google Scholar 

  21. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, et al. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124(20):2215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Joutsiniemi E, Saraste A, Pietila M, Maki M, Kajander S, Ukkonen H, et al. Absolute flow or myocardial flow reserve for the detection of significant coronary artery disease? Eur Heart J Cardiovasc Imaging. 2014;15(6):659–65.

    Article  PubMed  Google Scholar 

  23. Phelps ME. Positron emission tomography provides molecular imaging of biological processes. Proc Natl Acad Sci USA. 2000;97(16):9226–33.

    Article  CAS  PubMed  Google Scholar 

  24. Nakazato R, Berman DS, Alexanderson E, Slomka P. Myocardial perfusion imaging with PET. Imaging Med. 2013;5(1):35–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nandalur KR, Dwamena BA, Choudhri AF, Nandalur SR, Reddy P, Carlos RC. Diagnostic performance of positron emission tomography in the detection of coronary artery disease: a meta-analysis. Acad Radiol. 2008;15(4):444–51.

    Article  PubMed  Google Scholar 

  26. Jaarsma C, Leiner T, Bekkers SC, Crijns HJ, Wildberger JE, Nagel E, et al. Diagnostic performance of noninvasive myocardial perfusion imaging using single-photon emission computed tomography, cardiac magnetic resonance, and positron emission tomography imaging for the detection of obstructive coronary artery disease: a meta-analysis. J Am Coll Cardiol. 2012;59(19):1719–28.

    Article  PubMed  Google Scholar 

  27. Vashist A, Heller EN, Blum S, Brown EJ, Bhalodkar NC. Association of heart rate response with scan and left ventricular function on adenosine myocardial perfusion imaging. Am J Cardiol. 2002;89(2):174–7.

    Article  PubMed  Google Scholar 

  28. Amanullah AM, Berman DS, Hachamovitch R, Kiat H, Kang X, Friedman JD. Identification of severe or extensive coronary artery disease in women by adenosine technetium-99m sestamibi SPECT. Am J Cardiol. 1997;80(2):132–7.

    Article  CAS  PubMed  Google Scholar 

  29. Abidov A, Hachamovitch R, Hayes SW, Ng CK, Cohen I, Friedman JD, et al. Prognostic impact of hemodynamic response to adenosine in patients older than age 55 years undergoing vasodilator stress myocardial perfusion study. Circulation. 2003;107(23):2894–9.

    Article  PubMed  Google Scholar 

  30. Hage FG, Dean P, Iqbal F, Heo J, Iskandrian AE. A blunted heart rate response to regadenoson is an independent prognostic indicator in patients undergoing myocardial perfusion imaging. J Nucl Cardiol. 2011;18(6):1086–94.

    Article  PubMed  Google Scholar 

  31. Amanullah AM, Berman DS, Erel J, Kiat H, Cohen I, Germano G, et al. Incremental prognostic value of adenosine myocardial perfusion single-photon emission computed tomography in women with suspected coronary artery disease. Am J Cardiol. 1998;82(6):725–30.

    Article  CAS  PubMed  Google Scholar 

  32. Hage FG, Heo J, Franks B, Belardinelli L, Blackburn B, Wang W, et al. Differences in heart rate response to adenosine and regadenoson in patients with and without diabetes mellitus. Am Heart J. 2009;157(4):771–6.

    Article  CAS  PubMed  Google Scholar 

  33. Hage FG, Perry G, Heo J, Iskandrian AE. Blunting of the heart rate response to adenosine and regadenoson in relation to hyperglycemia and the metabolic syndrome. Am J Cardiol. 2010;105(6):839–43.

    Article  CAS  PubMed  Google Scholar 

  34. Bravo PE, Hage FG, Woodham RM, Heo J, Iskandrian AE. Heart rate response to adenosine in patients with diabetes mellitus and normal myocardial perfusion imaging. Am J Cardiol. 2008;102(8):1103–6.

    Article  CAS  PubMed  Google Scholar 

  35. Tomiyama T, Kumita S, Ishihara K, Suda M, Sakurai M, Hakozaki K, et al. Patients with reduced heart rate response to adenosine infusion have low myocardial flow reserve in (13)N-ammonia PET studies. Int J Card Imaging. 2015;31(5):1089–95.

    Article  Google Scholar 

  36. Conradson TB, Clarke B, Dixon CM, Dalton RN, Barnes PJ. Effects of adenosine on autonomic control of heart rate in man. Acta Physiol Scand. 1987;131(4):525–31.

    Article  CAS  PubMed  Google Scholar 

  37. Burger IA, Lohmann C, Messerli M, Bengs S, Becker A, Maredziak M, et al. Age- and sex-dependent changes in sympathetic activity of the left ventricular apex assessed by 18F-DOPA PET imaging. PLoS One. 2018;13(8):e0202302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Agrawal S, Mehta PK, Bairey Merz CN. Cardiac syndrome X: update. Heart Fail Clin. 2016;12(1):141–56.

    Article  PubMed  Google Scholar 

  39. Camici PG, Marraccini P, Lorenzoni R, Buzzigoli G, Pecori N, Perissinotto A, et al. Coronary hemodynamics and myocardial metabolism in patients with syndrome X: response to pacing stress. J Am Coll Cardiol. 1991;17(7):1461–70.

    Article  CAS  PubMed  Google Scholar 

  40. Tousoulis D, Crake T, Lefroy DC, Galassi AR, Maseri A. Left ventricular hypercontractility and ST segment depression in patients with syndrome X. J Am Coll Cardiol. 1993;22(6):1607–13.

    Article  CAS  PubMed  Google Scholar 

  41. Kaski JC. Cardiac syndrome X in women: the role of oestrogen deficiency. Heart. 2006;92(Suppl 3):iii5–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Montorsi P, Fabbiocchi F, Loaldi A, Annoni L, Polese A, De Cesare N, et al. Coronary adrenergic hyperreactivity in patients with syndrome X and abnormal electrocardiogram at rest. Am J Cardiol. 1991;68(17):1698–703.

    Article  CAS  PubMed  Google Scholar 

  43. Gulli G, Cemin R, Pancera P, Menegatti G, Vassanelli C, Cevese A. Evidence of parasympathetic impairment in some patients with cardiac syndrome X. Cardiovasc Res. 2001;52(2):208–16.

    Article  CAS  PubMed  Google Scholar 

  44. Chareonthaitawee P, Kaufmann PA, Rimoldi O, Camici PG. Heterogeneity of resting and hyperemic myocardial blood flow in healthy humans. Cardiovasc Res. 2001;50(1):151–61.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

CG was supported by grants from the Swiss National Science Foundation (SNSF); the Olga Mayenfisch Foundation, Switzerland; the OPO Foundation, Switzerland; the Novartis Foundation, Switzerland; the Swissheart Foundation; and the Helmut Horten Foundation, Switzerland. MM was supported by the Iten-Kohaut Foundation, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Catherine Gebhard.

Ethics declarations

Conflict of interest

All authors have the following to disclose: The University Hospital of Zurich holds a research contract with GE Healthcare. CG has received research grants from the Novartis Foundation, Switzerland.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Our study was approved by the Cantonal Ethics Board in Zurich, Switzerland (BASEC No. 2017–01112). The need to obtain informed consent was waived by the ethics committee due to the retrospective nature of the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haider, A., Bengs, S., Maredziak, M. et al. Heart rate reserve during pharmacological stress is a significant negative predictor of impaired coronary flow reserve in women. Eur J Nucl Med Mol Imaging 46, 1257–1267 (2019). https://doi.org/10.1007/s00259-019-4265-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-019-4265-7

Keywords

Navigation