Skip to main content
Log in

Cardiac sympathetic neuronal damage precedes myocardial fibrosis in patients with Anderson-Fabry disease

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Cardiac sympathetic denervation may be detectable in patients with Anderson-Fabry disease (AFD), suggesting its usefulness for early detection of the disease. However, the relationship between sympathetic neuronal damage measured by 123I–metaiodobenzylguanidine (MIBG) imaging with myocardial fibrosis on cardiac magnetic resonance (CMR) is still unclear.

Methods

Cardiac sympathetic innervation was assessed by 123I–MIBG single-photon emission computed tomography (SPECT) in 25 patients with genetically proved AFD. Within one month from MIBG imaging, all patients underwent contrast-enhanced CMR. MIBG defect size and fibrosis size on CMR were measured for the left ventricle (LV) and expressed as %LV.

Results

Patients were divided into three groups according to MIBG and CMR findings: (1) matched normal, without MIBG defects and without fibrosis on CMR (n = 10); (2) unmatched, with MIBG defect but without fibrosis (n = 5); and (3) matched abnormal, with MIBG defect and fibrosis (n = 10). The three groups did not differ with respect to age, gender, α-galactosidase, proteinuria, glomerular filtration rate, and troponin I, while New York Heart Association class (p = 0.008), LV hypertrophy (p = 0.05), and enzyme replacement therapy (p = 0.02) were different among groups. Although in patients with matched abnormal findings, there was a significant correlation between MIBG defect size and area of fibrosis at CMR (r2 = 0.98, p < 0.001), MIBG defect size was larger than fibrosis size (26 ± 23 vs. 18 ± 13%LV, p = 0.02).

Conclusion

Sympathetic neuronal damage is frequent in AFD patients, and it may precede myocardial damage, such as fibrosis. Thus, 123I–MIBG imaging can be considered a challenging technique for early detection of cardiac involvement in AFD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Desnick RJ, Ioannou YA, Eng CM. α-Galactosidase A deficiency: Fabry disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D, editors. The metabolic and molecular bases of inherited disease. 8th ed. New York: McGraw Hill; 2001. p. 3733–74.

    Google Scholar 

  2. Linhart A, Kampmann C, Zamorano JL, Sunder-Plassmann G, Beck M, Mehta A, et al. European FOS investigators. Cardiac manifestations of Anderson-Fabry disease: results from the international Fabry outcome survey. Eur Heart J. 2007;28:1228–35.

    Article  PubMed  Google Scholar 

  3. Schiffmann R. Fabry disease. Handb Clin Neurol. 2015;132:231–48.

    Article  PubMed  Google Scholar 

  4. Schiffmann R, Warnock DG, Banikazemi M, Bultas J, Linthorst GE, Packman S, et al. Fabry disease: progression of nephropathy, and prevalence of cardiac and cerebrovascular events before enzyme replacement therapy. Nephrol Dial Transplant. 2009;24:2102–11.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Moon JC, Sachdev B, Elkington AG, McKenna WJ, Mehta A, Pennell DJ, et al. Gadolinium enhanced cardiovascular magnetic resonance in Anderson-Fabry disease. Evidence for a disease specific abnormality of the myocardial interstitium. Eur Heart J. 2003;24:2151–5.

    Article  PubMed  Google Scholar 

  6. Weidemann F, Sanchez-Niño MD, Politei J, Oliveira JP, Wanner C, Warnock DG, et al. Fibrosis: a key feature of Fabry disease with potential therapeutic implications. Orphanet J Rare Dis. 2013;8:116.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mewton N, Liu CY, Croisille P, Bluemke D, Lima JA. Assessment of myocardial fibrosis with cardiovascular magnetic resonance. J Am Coll Cardiol. 2011;57:891–903.

    Article  PubMed  Google Scholar 

  8. Wu KC, Weiss RG, Thiemann DR, Kitagawa K, Schmidt A, Dalal D, et al. Late gadolinium enhancement by cardiovascular magnetic resonance heralds an adverse prognosis in non ischemic cardiomyopathy. J Am Coll Cardiol. 2008;51:2414–21.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Stirrat J, White JA. The prognostic role of late gadolinium enhancement magnetic resonance imaging in patients with cardiomyopathy. Can J Cardiol. 2013;29:329–36.

    Article  PubMed  Google Scholar 

  10. Oh-Ici D, Ridgway JP, Kuehne T, Berger F, Plein S, Sivananthan M, et al. Cardiovascular magnetic resonance of myocardial edema using a short inversion time inversion recovery (STIR) black-blood technique: diagnostic accuracy of visual and semi-quantitative assessment. J Cardiovasc Magn Reson. 2012;14:22.

  11. Kline RC, Swanson DP, Wieland DM, Thrall JH, Gross MD, Pit B, et al. Myocardial imaging in man with I-123 metaiodobenzylguanidine. J Nucl Med. 1981;22:129–32.

    CAS  PubMed  Google Scholar 

  12. Wieland DM, Brown LE, LesRogers W, Worthington KC, Wu JI, Clinthorne NH, et al. Myocardial imaging with a radioionated norepinephrine storage analog. J Nucl Med. 1981;22:22–31.

    CAS  PubMed  Google Scholar 

  13. Wellman HN, Zipes DP. Cardiac sympathetic imaging with radioionated metaiodobenzylguanidine (MIBG). In: Zipes DP, Rowlands DJ, editors. Progress in cardiology 3/1. Philadelphia/London: Lea & Febiger; 1990. p. 161–74.

    Google Scholar 

  14. Barber MJ, Mueller TM, Henry DP, Felten SY, Zipes DP. Transmural myocardial infarction in the dog produces sympathectomy in non infarcted myocardium. Circulation. 1983;67:787–96.

    Article  CAS  PubMed  Google Scholar 

  15. Dae MW, Herre JM, O’Connell JW, Botvinick EH, Newman D, Munoz L. Scintigraphic assessment of sympathetic innervation after transmural versus non transmural myocardial infarction. J Am Coll Cardiol. 1991;17:1416–23.

    Article  CAS  PubMed  Google Scholar 

  16. Stanton MS, Tuli MM, Radtke NL, Heger J, Miles WM, Mock BH, et al. Regional sympathetic denervation after myocardial infarction in humans detected non-invasively using I-123-metaiodobenzylguaninidine. J Am Coll Cardiol. 1989;14:1519–26.

    Article  CAS  PubMed  Google Scholar 

  17. Glowniak JV, Turner FE, Gray LL, Palac RT, Lagunas-Solar MC, Woodward WR. Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants. J Nucl Med. 1989;30:1182–91.

    CAS  PubMed  Google Scholar 

  18. Schofer J, Spielmann R, Schuchert A, Weber K, Schluter M. Iodine-123-meta-iodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy. J Am Coll Cardiol. 1988;12:1252–8.

    Article  CAS  PubMed  Google Scholar 

  19. Henderson EB, Kahn JK, Corbett JR, Jansen DE, Pippin J, Kulkarni P, et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy. Circulation. 1988;78:1192–9.

    Article  CAS  PubMed  Google Scholar 

  20. Nakajima K, Bunko H, Taki J, Shimizu M, Muramori A, Hisada K. Quantitative analysis of l23 I-metaiodobenzylguanidine (MIBG) uptake in hypertrophic cardiomyopathy. Am Heart J. 1990;119:1329–37.

    Article  CAS  PubMed  Google Scholar 

  21. Stark RP, McGinn AL, Wilson RF. Chest pain in cardiac-transplant recipients. N Engl J Med. 1991;324:1791–4.

    Article  CAS  PubMed  Google Scholar 

  22. Spinelli L, Pellegrino T, Pisani A, Giudice CA, Riccio E, Imbriaco M, et al. Relationship between left ventricular diastolic function and myocardial sympathetic denervation measured by (123) I-meta-iodobenzylguanidine imaging in Anderson-Fabry disease. Eur J Nucl Med Mol Imaging. 2016;43:729–39.

    Article  CAS  PubMed  Google Scholar 

  23. Yamamoto S, Suzuki H, Sugimura K, Tatebe S, Aoki T, Miura M, et al. Focal reduction in cardiac (123) I-meta-iodobenzylguanidine uptake in patients with Anderson-Fabry disease. Circ J. 2016;25(80):2550–1.

    Article  Google Scholar 

  24. Levey AS, Bosch JP, Lewis JB, Greene T, Rogers N, Roth D. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Modification of diet in renal disease study group. Ann Intern Med. 1999;130:461–70.

    Article  CAS  PubMed  Google Scholar 

  25. Flotats A, Carrió I, Agostini D, Le Guludec D, Marcassa C, Schäfers M, et al. Proposal for standardization of 123I metaiodobenzylguanidine (MIBG) cardiac sympathetic imaging by the EANM cardiovascular committee and the European Council of Nuclear Cardiology. Eur J Nucl Med Mol Imaging. 2010;37:1802–12.

    Article  PubMed  Google Scholar 

  26. Pellegrino T, Petretta M, De Luca S, Paolillo S, Boemio A, Carotenuto R, et al. Observer reproducibility of results from a low-dose 123I-metaiodobenzylguanidine cardiac imaging protocol in patients with heart failure. Eur J Nucl Med Mol Imaging. 2013;40:1549–57.

    Article  CAS  PubMed  Google Scholar 

  27. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging Committee of the Council on clinical cardiology of the American Heart Association. Circulation. 2002;105:539–42.

    Article  PubMed  Google Scholar 

  28. Ponsiglione A, Puglia M, Morisco C, Barbuto L, Rapacciuolo A, Santoro M, et al. A unique association of arrhythmogenic right ventricular dysplasia and acute myocarditis, as assessed by cardiac MRI: a case report. BMC Cardiovasc Disord. 2016;21:16–230.

    Google Scholar 

  29. Kim RJ, Wu E, Rafael A, Chen E, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med. 2000;343:1445–53.

    Article  CAS  PubMed  Google Scholar 

  30. Moon JC, Sheppard M, Reed E, Lee P, Elliot PM, Pennell DJ. The histological basis of late gadolinium enhancement cardiovascular magnetic resonance in a patient with Anderson-Fabry disease. J Cardiovasc Magn Reson. 2006;8:479–82.

    Article  PubMed  Google Scholar 

  31. Kozor R, Grieve SM, Tchan MC, Callaghan F, Hamilton-Craig C, Denaro C, et al. Cardiac involvement in genotype-positive Fabry disease patients assessed by cardiovascular MR. Heart. 2016;102:298–302.

    Article  CAS  PubMed  Google Scholar 

  32. De Cobelli F, Esposito A, Belloni E, Pieroni M, Perseghin G, Chimenti C, et al. Delayed-enhanced cardiac MRI for differentiation of Fabry’s disease from symmetric hypertrophic cardiomyopathy. Am J Roentgenol. 2009;192:W97–102.

    Article  Google Scholar 

  33. Niemann M, Herrmann S, Hu K, Breunig F, Strotmann J, Beer M, et al. Differences in Fabry cardiomyopathy between female and male patients: consequences for diagnostic assessment. JACC Cardiovasc Imaging. 2011;4:592–601.

    Article  PubMed  Google Scholar 

  34. Pica S, Sado DM, Maestrini V, Fontana M, White SK, Treibel T, et al. Reproducibility of native myocardial T1 mapping in the assessment of Fabry disease and its role in early detection of cardiac involvement by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2014;5:16–99.

    Google Scholar 

  35. Sado DM, White SK, Piechnik SK, Banypersad SM, Treibel T, Captur G, et al. Identification and assessment of Anderson-Fabry disease by cardiovascular magnetic resonance noncontrast myocardial T1 mapping. Circ Cardiovasc Imaging. 2013;6:392–8.

    Article  PubMed  Google Scholar 

  36. Krämer J, Niemann M, Liu D, Hu K, MacHann W, Beer M, et al. Two-dimensional speckle tracking as a non-invasive tool for identification of myocardial fibrosis in Fabry disease. Eur Heart J. 2013;34:1587–96.

    Article  PubMed  Google Scholar 

  37. Nappi C, Altiero M, Imbriaco M, Nicolai E, Giudice CA, Aiello M, et al. First experience of simultaneous PET/MRI for the early detection of cardiac involvement in patients with Anderson-Fabry disease. Eur J Nucl Med Mol Imaging. 2015;42:1025–31.

    Article  CAS  PubMed  Google Scholar 

  38. Verschure DO, Lutter R, van Eck-Smit BL, Somsen GA, Verberne HJ. Myocardial (123)I–MIBG scintigraphy in relation to markers of inflammation and long-term clinical outcome in patients with stable chronic heart failure. J Nucl Cardiol. 2016. doi:10.1007/s12350-016-0697-7

  39. Bertelsen AK, Tøndel C, Krohn J, Bull N, Aarseth J, Houge G, et al. Small fibre neuropathy in Fabry disease. J Neurol. 2013;260:917–9.

    Article  CAS  PubMed  Google Scholar 

  40. Alamartine E, Sury A, Roche F, Pichot V, Barthelemy JC. Autonomic nervous system activity in patients with Fabry disease. Open J Intern Med. 2012;2:116–22.

    Article  Google Scholar 

  41. Namdar M, Steffel J, Vidovic M, Brunckhorst CB, Holzmeister J, Luscher TF, et al. Electrocardiographic changes in early recognition of Fabry disease. Heart. 2011;97:485–90.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto Cuocolo.

Ethics declarations

Conflict of interest

None.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Imbriaco, M., Pellegrino, T., Piscopo, V. et al. Cardiac sympathetic neuronal damage precedes myocardial fibrosis in patients with Anderson-Fabry disease. Eur J Nucl Med Mol Imaging 44, 2266–2273 (2017). https://doi.org/10.1007/s00259-017-3778-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-017-3778-1

Keywords

Navigation