Skip to main content
Log in

Potential of hybrid 18F-fluorocholine PET/MRI for prostate cancer imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

To report the first results of hybrid 18F-fluorocholine PET/MRI imaging for the detection of prostate cancer.

Methods

This analysis included 26 consecutive patients scheduled for prostate PET/MRI before radical prostatectomy. The examinations were performed on a hybrid whole-body PET/MRI scanner. The MR acquisitions which included T2-weighted, diffusion-weighted and dynamic contrast-enhanced sequences were followed during the same session by whole-body PET scans. Parametric maps were constructed to measure normalized T2-weighted intensity (nT2), apparent diffusion coefficient (ADC), volume transfer constant (K trans), extravascular extracellular volume fraction (v e) and standardized uptake values (SUV). With pathology as the gold standard, ROC curves were calculated using logistic regression for each parameter and for the best combination with and without PET to obtain a MR model versus a PETMR model.

Results

Of the 26 patients initially selected, 3 were excluded due to absence of an endorectal coil (2 patients) or prosthesis artefacts (1 patient). In the whole prostate, the area under the curve (AUC) for SUVmax, ADC, nT2, K trans and v e were 0.762, 0.756, 0.685, 0.611 and 0.529 with a best threshold at 3.044 for SUVmax and 1.075 × 10−3 mm2/s for ADC. The anatomical distinction between the transition zone and the peripheral zone showed the potential of the adjunctive use of PET. In the peripheral zone, the AUC of 0.893 for the PETMR model was significantly greater (p = 0.0402) than the AUC of 0.84 for the MR model only. In the whole prostate, no relevant correlation was observed between ADC and SUVmax. The SUVmax was not affected by the Gleason score.

Conclusion

The performance of a hybrid whole-body 18F-fluorocholine PET/MRI scan in the same session combined with a prostatic MR examination did not interfere with the diagnostic accuracy of the MR sequences. The registration of the PET data and the T2 anatomical MR sequence data allowed precise localization of hypermetabolic foci in the prostate. While in the transition zone the adenomatous hyperplasia interfered with cancer detection by PET, the quantitative analysis tool performed well for cancer detection in the peripheral zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2012. CA Cancer J Clin. 2012;62:10–29. doi:10.3322/caac.20138.

    Article  PubMed  Google Scholar 

  2. Ferlay J, Autier P, Boniol M, Heanue M, Colombet M, Boyle P. Estimates of the cancer incidence and mortality in Europe in 2006. Ann Oncol. 2007;18:581–92. doi:10.1093/annonc/mdl498.

    Article  CAS  PubMed  Google Scholar 

  3. Yakar D, Debats OA, Bomers JG, Schouten MG, Vos PC, van Lin E, et al. Predictive value of MRI in the localization, staging, volume estimation, assessment of aggressiveness, and guidance of radiotherapy and biopsies in prostate cancer. J Magn Reson Imaging. 2012;35:20–31. doi:10.1002/jmri.22790.

    Article  PubMed  Google Scholar 

  4. Padhani AR. Integrating multiparametric prostate MRI into clinical practice. Cancer Imaging. 2011;11 Spec No A:S27–37. doi:10.1102/1470-7330.2011.9007.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Schlemmer HP. Prostate cancer: localizing the cancer in patients with persistent negative biopsies. Cancer Imaging. 2011;11 Spec No A:S1. doi:10.1102/1470-7330.2011.9001.

    Article  Google Scholar 

  6. Steiner C, Vees H, Zaidi H, Wissmeyer M, Berrebi O, Kossovsky MP, et al. Three-phase 18F-fluorocholine PET/CT in the evaluation of prostate cancer recurrence. Nuklearmedizin Nucl Med. 2009;48:1–9; quiz N2–3.

    Google Scholar 

  7. Krause BJ, Souvatzoglou M, Tuncel M, Herrmann K, Buck AK, Praus C, et al. The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:18–23. doi:10.1007/s00259-007-0581-4.

    Article  CAS  PubMed  Google Scholar 

  8. Castellucci P, Fuccio C, Nanni C, Santi I, Rizzello A, Lodi F, et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. 2009;50:1394–400. doi:10.2967/jnumed.108.061507.

    Article  PubMed  Google Scholar 

  9. Picchio M, Messa C, Landoni C, Gianolli L, Sironi S, Brioschi M, et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol. 2003;169:1337–40. doi:10.1097/01.ju.0000056901.95996.43.

    Article  CAS  PubMed  Google Scholar 

  10. Schmid DT, John H, Zweifel R, Cservenyak T, Westera G, Goerres GW, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology. 2005;235:623–8. doi:10.1148/radiol.2352040494.

    Article  PubMed  Google Scholar 

  11. Husarik DB, Miralbell R, Dubs M, John H, Giger OT, Gelet A, et al. Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging. 2008;35:253–63. doi:10.1007/s00259-007-0552-9.

    Article  PubMed  Google Scholar 

  12. Gutman F, Aflalo-Hazan V, Kerrou K, Montravers F, Grahek D, Talbot JN. 18F-choline PET/CT for initial staging of advanced prostate cancer. AJR Am J Roentgenol. 2006;187:W618-21. doi:10.2214/AJR.05.0437.

    Article  PubMed  Google Scholar 

  13. Schiavina R, Scattoni V, Castellucci P, Picchio M, Corti B, Briganti A, et al. 11C-choline positron emission tomography/computerized tomography for preoperative lymph-node staging in intermediate-risk and high-risk prostate cancer: comparison with clinical staging nomograms. Eur Urol. 2008;54:392–401. doi:10.1016/j.eururo.2008.04.030.

    Article  PubMed  Google Scholar 

  14. Beheshti M, Imamovic L, Broinger G, Vali R, Waldenberger P, Stoiber F, et al. 18F choline PET/CT in the preoperative staging of prostate cancer in patients with intermediate or high risk of extracapsular disease: a prospective study of 130 patients. Radiology. 2010;254:925–33. doi:10.1148/radiol.09090413.

    Article  PubMed  Google Scholar 

  15. Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, et al. Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med. 2005;46:1642–9.

    CAS  PubMed  Google Scholar 

  16. Bundschuh RA, Wendl CM, Weirich G, Eiber M, Souvatzoglou M, Treiber U, et al. Tumour volume delineation in prostate cancer assessed by [11C]choline PET/CT: validation with surgical specimens. Eur J Nucl Med Mol Imaging. 2013;40:824–31. doi:10.1007/s00259-013-2345-7.

    Article  PubMed  Google Scholar 

  17. Jambor I, Borra R, Kemppainen J, Lepomaki V, Parkkola R, Dean K, et al. Improved detection of localized prostate cancer using co-registered MRI and (11)C-acetate PET/CT. Eur J Radiol. 2012;81:2966–72. doi:10.1016/j.ejrad.2011.12.043.

    Article  PubMed  Google Scholar 

  18. Van den Bergh L, Koole M, Isebaert S, Joniau S, Deroose CM, Oyen R, et al. Is there an additional value of (11)C-choline PET-CT to T2-weighted MRI images in the localization of intraprostatic tumor nodules? Int J Radiat Oncol Biol Phys. 2012;83:1486–92. doi:10.1016/j.ijrobp.2011.10.046.

    Article  PubMed  Google Scholar 

  19. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol. 2011;56:3091–106. doi:10.1088/0031-9155/56/10/013.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Bornert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138–52. doi:10.1007/s00259-010-1603-1.

    Article  CAS  PubMed  Google Scholar 

  21. Tofts PS, Kermode AG. Measurement of the blood–brain barrier permeability and leakage space using dynamic MR imaging. 1. Fundamental concepts. Magn Reson Med. 1991;17:357–67.

    Article  CAS  PubMed  Google Scholar 

  22. Fritz-Hansen T, Rostrup E, Larsson HB, Sondergaard L, Ring P, Henriksen O. Measurement of the arterial concentration of Gd-DTPA using MRI: a step toward quantitative perfusion imaging. Magn Reson Med. 1996;36:225–31.

    Article  CAS  PubMed  Google Scholar 

  23. Tabelow K, Clayden JD, de Micheaux PL, Polzehl J, Schmid VJ, Whitcher B. Image analysis and statistical inference in neuroimaging with R. Neuroimage. 2011;55:1686–93. doi:10.1016/j.neuroimage.2011.01.013.

    Article  CAS  PubMed  Google Scholar 

  24. Whitcher B, Schmid VJ. Quantitative analysis of dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging for oncology in R. J Stat Softw. 2011;44:1–29.

    Google Scholar 

  25. Rohrer M, Bauer H, Mintorovitch J, Requardt M, Weinmann HJ. Comparison of magnetic properties of MRI contrast media solutions at different magnetic field strengths. Invest Radiol. 2005;40:715–24.

    Article  PubMed  Google Scholar 

  26. de Bazelaire CM, Duhamel GD, Rofsky NM, Alsop DC. MR imaging relaxation times of abdominal and pelvic tissues measured in vivo at 3.0 T: preliminary results. Radiology. 2004;230:652–9. doi:10.1148/radiol.2303021331.

    Article  PubMed  Google Scholar 

  27. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. doi:10.1186/1471-2105-12-77.

    Article  PubMed Central  PubMed  Google Scholar 

  28. Langer DL, van der Kwast TH, Evans AJ, Trachtenberg J, Wilson BC, Haider MA. Prostate cancer detection with multi-parametric MRI: logistic regression analysis of quantitative T2, diffusion-weighted imaging, and dynamic contrast-enhanced MRI. J Magn Reson Imaging. 2009;30:327–34. doi:10.1002/jmri.21824.

    Article  PubMed  Google Scholar 

  29. Miao H, Fukatsu H, Ishigaki T. Prostate cancer detection with 3-T MRI: comparison of diffusion-weighted and T2-weighted imaging. Eur J Radiol. 2007;61:297–302. doi:10.1016/j.ejrad.2006.10.002.

    Article  PubMed  Google Scholar 

  30. Kim JH, Kim JK, Park BW, Kim N, Cho KS. Apparent diffusion coefficient: prostate cancer versus noncancerous tissue according to anatomical region. J Magn Reson Imaging. 2008;28:1173–9. doi:10.1002/jmri.21513.

    Article  PubMed  Google Scholar 

  31. Kitajima K, Takahashi S, Ueno Y, Yoshikawa T, Ohno Y, Obara M, et al. Clinical utility of apparent diffusion coefficient values obtained using high b-value when diagnosing prostate cancer using 3 tesla MRI: comparison between ultra-high b-value (2000 s/mm2) and standard high b-value (1000 s/mm2). J Magn Reson Imaging . 2012;36:198–205. doi:10.1002/jmri.23627.

    Article  PubMed  Google Scholar 

  32. Park H, Wood D, Hussain H, Meyer CR, Shah RB, Johnson TD, et al. Introducing parametric fusion PET/MRI of primary prostate cancer. J Nucl Med. 2012;53:546–51. doi:10.2967/jnumed.111.091421.

    Article  CAS  PubMed  Google Scholar 

  33. Kato T, Tsukamoto E, Kuge Y, Takei T, Shiga T, Shinohara N, et al. Accumulation of [11C]acetate in normal prostate and benign prostatic hyperplasia: comparison with prostate cancer. Eur J Nucl Med Mol Imaging. 2002;29:1492–5. doi:10.1007/s00259-002-0885-3.

    Article  CAS  PubMed  Google Scholar 

  34. Woodfield CA, Tung GA, Grand DJ, Pezzullo JA, Machan JT, Renzulli 2nd JF. Diffusion-weighted MRI of peripheral zone prostate cancer: comparison of tumor apparent diffusion coefficient with Gleason score and percentage of tumor on core biopsy. AJR Am J Roentgenol. 2010;194:W316–22. doi:10.2214/AJR.09.2651.

    Article  PubMed  Google Scholar 

  35. Breeuwsma AJ, Pruim J, Jongen MM, Suurmeijer AJ, Vaalburg W, Nijman RJ, et al. In vivo uptake of [11C]choline does not correlate with cell proliferation in human prostate cancer. Eur J Nucl Med Mol Imaging. 2005;32:668–73. doi:10.1007/s00259-004-1741-4.

    Article  PubMed  Google Scholar 

  36. Verma S, Rajesh A, Morales H, Lemen L, Bills G, Delworth M, et al. Assessment of aggressiveness of prostate cancer: correlation of apparent diffusion coefficient with histologic grade after radical prostatectomy. AJR Am J Roentgenol. 2011;196:374–81. doi:10.2214/AJR.10.4441.

    Article  PubMed  Google Scholar 

  37. Tan CH, Wang J, Kundra V. Diffusion weighted imaging in prostate cancer. Eur Radiol. 2011;21:593–603. doi:10.1007/s00330-010-1960-y.

    Article  PubMed  Google Scholar 

  38. Somford DM, Hambrock T, de Kaa CA H-v, Futterer JJ, van Oort IM, van Basten JP, et al. Initial experience with identifying high-grade prostate cancer using diffusion-weighted MR imaging (DWI) in patients with a gleason score ≤3 + 3 = 6 upon schematic TRUS-guided biopsy: a radical prostatectomy correlated series. Invest Radiol. 2012;47:153–8. doi:10.1097/RLI.0b013e31823ea1f0.

    PubMed  Google Scholar 

  39. Ren J, Huan Y, Wang H, Chang YJ, Zhao HT, Ge YL, et al. Dynamic contrast-enhanced MRI of benign prostatic hyperplasia and prostatic carcinoma: correlation with angiogenesis. Clin Radiol. 2008;63:153–9. doi:10.1016/j.crad.2007.07.023.

    Article  CAS  PubMed  Google Scholar 

  40. Gibbs P, Liney GP, Pickles MD, Zelhof B, Rodrigues G, Turnbull LW. Correlation of ADC and T2 measurements with cell density in prostate cancer at 3.0 Tesla. Invest Radiol. 2009;44:572–6. doi:10.1097/RLI.0b013e3181b4c10e.

    Article  PubMed  Google Scholar 

  41. Jung DC, Lee HJ, Seo JW, Park SY, Lee SJ, Lee JH, et al. Diffusion-weighted imaging of a prostate cancer xenograft model seen on a 7 Tesla animal MR scanner: comparison of ADC values and pathologic findings. Korean J Radiol. 2012;13:82–9. doi:10.3348/kjr.2012.13.1.82.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Futterer JJ, Heijmink SW, Scheenen TW, Veltman J, Huisman HJ, Vos P, et al. Prostate cancer localization with dynamic contrast-enhanced MR imaging and proton MR spectroscopic imaging. Radiology. 2006;241:449–58. doi:10.1148/radiol.2412051866.

    Article  PubMed  Google Scholar 

  43. Oto A, Yang C, Kayhan A, Tretiakova M, Antic T, Schmid-Tannwald C, et al. Diffusion-weighted and dynamic contrast-enhanced MRI of prostate cancer: correlation of quantitative MR parameters with Gleason score and tumor angiogenesis. AJR Am J Roentgenol. 2011;197:1382–90. doi:10.2214/AJR.11.6861.

    Article  PubMed  Google Scholar 

  44. Reducindo I, Arce-Santana E, Campos-Delgado DU, Vigueras-Gomez F. Non-rigid multimodal image registration based on local variability measures and optical flow. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:1133–6. doi:10.1109/EMBC.2012.6346135.

    CAS  PubMed  Google Scholar 

  45. White S, Hricak H, Forstner R, Kurhanewicz J, Vigneron DB, Zaloudek CJ, et al. Prostate cancer: effect of postbiopsy hemorrhage on interpretation of MR images. Radiology. 1995;195:385–90. doi:10.1148/radiology.195.2.7724756.

    Article  CAS  PubMed  Google Scholar 

  46. Chang JH, Lim Joon D, Lee ST, Gong SJ, Anderson NJ, Scott AM, et al. Intensity modulated radiation therapy dose painting for localized prostate cancer using 11C-choline positron emission tomography scans. Int J Radiat Oncol Biol Phys. 2012;83:e691–6. doi:10.1016/j.ijrobp.2012.01.087.

    Article  PubMed  Google Scholar 

  47. Akbarzadeh A, Ay MR, Ahmadian A, Riahi Alam N, Zaidi H. MRI-guided attenuation correction in whole-body PET/MR: assessment of the effect of bone attenuation. Ann Nucl Med. 2012;27:152–62. doi:10.1007/s12149-012-0667-3.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas de Perrot.

Additional information

Thomas de Perrot and Olivier Rager contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(MP4 9277 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Perrot, T., Rager, O., Scheffler, M. et al. Potential of hybrid 18F-fluorocholine PET/MRI for prostate cancer imaging. Eur J Nucl Med Mol Imaging 41, 1744–1755 (2014). https://doi.org/10.1007/s00259-014-2786-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-014-2786-7

Keywords

Navigation