Skip to main content

Advertisement

Log in

Increased brain amyloid deposition in patients with a lifetime history of major depression: evidenced on 18F-florbetapir (AV-45/Amyvid) positron emission tomography

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The literature suggests that a history of depression is associated with an increased risk of developing Alzheimer’s disease (AD). The aim of this study was to examine brain amyloid accumulation in patients with lifetime major depression using 18F-florbetapir (AV-45/Amyvid) PET imaging in comparison with that in nondepressed subjects.

Methods

The study groups comprised 25 depressed patients and 11 comparison subjects who did not meet the diagnostic criteria for AD or amnestic mild cognitive impairment. Vascular risk factors, homocysteine and apolipoprotein E (ApoE) genotype were also examined. The standard uptake value ratio (SUVR) of each volume of interest was analysed using whole the cerebellum as the reference region.

Results

Patients with a lifetime history of major depression had higher 18F-florbetapir SUVRs in the precuneus (1.06 ± 0.08 vs. 1.00 ± 0.06, p = 0.045) and parietal region (1.05 ± 0.08 vs. 0.98 ± 0.07, p = 0.038) than the comparison subjects. Voxel-wise analysis revealed a significantly increased SUVR in depressed patients in the frontal, parietal, temporal and occipital areas (p < 0.01). There were no significant associations between global 18F-florbetapir SUVRs and prior depression episodes, age at onset of depression, or time since onset of first depression.

Conclusion

Increased 18F-florbetapir binding values were found in patients with late-life major depression relative to comparison subjects in specific brain regions, despite no differences in age, sex, education, Mini Mental Status Examination score, vascular risk factor score, homocysteine and ApoE ε4 genotype between the two groups. A longitudinal follow-up study with a large sample size would be worthwhile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ownby RL, Crocco E, Acevedo A, John V, Loewenstein D. Depression and risk for Alzheimer disease: systematic review, meta-analysis, and metaregression analysis. Arch Gen Psychiatry. 2006;63:530–8.

    Article  PubMed Central  PubMed  Google Scholar 

  2. Jorm AF. History of depression as a risk factor for dementia: an updated review. Aust N Z J Psychiatr. 2001;35:776–81.

    Article  CAS  Google Scholar 

  3. Green RC, Cupples LA, Kurz A, Auerbach S, Go R, Sadovnick D, et al. Depression as a risk factor for Alzheimer disease: the MIRAGE Study. Arch Neurol. 2003;60:753–9.

    Article  PubMed  Google Scholar 

  4. Kessing LV, Andersen PK. Does the risk of developing dementia increase with the number of episodes in patients with depressive disorder and in patients with bipolar disorder? J Neurol Neurosurg Psychiatry. 2004;75:1662–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Rapp MA, Schnaider-Beeri M, Grossman HT, Sano M, Perl DP, Purohit DP, et al. Increased hippocampal plaques and tangles in patients with Alzheimer disease with a lifetime history of major depression. Arch Gen Psychiatry. 2006;63:161–7.

    Article  PubMed  Google Scholar 

  6. Geerlings MI, Schoevers RA, Beekman AT, Jonker C, Deeg DJ, Schmand B, et al. Depression and risk of cognitive decline and Alzheimer’s disease. Results of two prospective community-based studies in The Netherlands. Br J Psychiatry. 2000;176:568–75.

    Article  CAS  PubMed  Google Scholar 

  7. Nilsson FM, Kessing LV, Sørensen TM, Andersen PK, Bolwig TG. Enduring increased risk of developing depression and mania in patients with dementia. J Neurol Neurosurg Psychiatry. 2002;73:40–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Klunk WE, Wang Y, Huang G-F, Debnath ML, Holt DP, Mathis CA. Uncharged thioflavin-T derivatives bind to amyloid-beta protein with high affinity and readily enter the brain. Life Sci. 2001;69:1471–84.

    Article  CAS  PubMed  Google Scholar 

  9. Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatr. 2002;10:24–35.

    Article  Google Scholar 

  10. Small GW, Kepe V, Ercoli LM, Siddarth P, Bookheimer SY, Miller KJ, et al. PET of brain amyloid and tau in mild cognitive impairment. N Engl J Med. 2006;355:2652–63.

    Article  CAS  PubMed  Google Scholar 

  11. Wong DF, Rosenberg PB, Zhou Y, Kumar A, Raymont V, Ravert HT, et al. In vivo imaging of amyloid deposition in Alzheimer disease using the radioligand 18F-AV-45 (florbetapir F18). J Nucl Med. 2010;51:913–20.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Butters MA, Klunk WE, Mathis CA, Price JC, Ziolko SK, Hoge JA, et al. Imaging Alzheimer pathology in late-life depression with PET and Pittsburgh Compound-B. Alzheimer Dis Assoc Disord. 2008;22:261–8.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Morris JC, Storandt M, Miller JP, McKeel DW, Price JL, Rubin EH, et al. Mild cognitive impairment represents early-stage Alzheimer disease. Arch Neurol. 2001;58:397–401.

    CAS  PubMed  Google Scholar 

  14. Butters MA, Whyte EM, Nebes RD, Begley AE, Dew MA, Mulsant BH, et al. The nature and determinants of neuropsychological functioning in late-life depression. Arch Gen Psychiatry. 2004;61:587–95.

    Article  PubMed  Google Scholar 

  15. Yeh YC, Tsang HY, Lin PY, Kuo YT, Yen CF, Chen CC, et al. Subtypes of mild cognitive impairment among the elderly with major depressive disorder in remission. Am J Geriatr Psychiatr. 2011;19:923–31.

    Article  Google Scholar 

  16. Lopez OL, Jagust WJ, DeKosky ST, Becker JT, Fitzpatrick A, Dulberg C, et al. Prevalence and classification of mild cognitive impairment in the Cardiovascular Health Study Cognition Study: part 1. Arch Neurol. 2003;60:1385–9.

    Article  PubMed  Google Scholar 

  17. Lee JS, Potter GG, Wagner HR, Welsh-Bohmer KA, Steffens DC. Persistent mild cognitive impairment in geriatric depression. Int Psychogeriatr. 2007;19:125–35.

    Article  PubMed  Google Scholar 

  18. Irizarry M, Gurol M, Raju S, Diaz-Arrastia R, Locascio J, Tennis M, et al. Association of homocysteine with plasma amyloid β protein in aging and neurodegenerative disease. Neurology. 2005;65:1402–8.

    Article  CAS  PubMed  Google Scholar 

  19. Whitmer RA, Sidney S, Selby J, Johnston SC, Yaffe K. Midlife cardiovascular risk factors and risk of dementia in late life. Neurology. 2005;64:277–81.

    Article  CAS  PubMed  Google Scholar 

  20. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res. 1975;12:189–98.

    Article  CAS  PubMed  Google Scholar 

  21. Lin RT, Lai CL, Tai CT, Liu CK, Yen YY, Howng SL. Prevalence and subtypes of dementia in southern Taiwan: impact of age, sex, education, and urbanization. J Neurol Sci. 1998;160:67–75.

    Article  CAS  PubMed  Google Scholar 

  22. Liu CK, Lin RT, Chen YF, Tai CT, Yen YY, Howng SL. Prevalence of dementia in an urban area in Taiwan. J Formos Med Assoc. 1996;95:762–8.

    CAS  PubMed  Google Scholar 

  23. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–8.

    Article  CAS  PubMed  Google Scholar 

  24. McKhann G, Drachman D, Folstein M, Katzman R, Price D, Stadlan EM. Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology. 1984;34:939–44.

    Article  CAS  PubMed  Google Scholar 

  25. Spitzer M, Robert L, Gibbon M, Williams J. Structured clinical interview for DSM-IV-TR axis I disorders, research version, non-patient edition (SCID-I/NP). New York: Biometrics Research, New York State Psychiatric Institute; 2002.

    Google Scholar 

  26. Petersen RC, Doody R, Kurz A, Mohs RC, Morris JC, Rabins PV, et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58:1985–92.

    Article  CAS  PubMed  Google Scholar 

  27. Huang KL, Lin KJ, Hsiao IT, Kuo HC, Hsu WC, Chuang WL, et al. Regional amyloid deposition in amnestic mild cognitive impairment and Alzheimer’s disease evaluated by [18F]AV-45 positron emission tomography in Chinese population. PLoS One. 2013;8:e58974.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Hamilton M. A rating scale for depression. J Neurol Neurosurg Psychiatry. 1960;23:56–62.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Wolf PA, D’Agostino RB, Belanger AJ, Kannel WB. Probability of stroke: a risk profile from the Framingham Study. Stroke. 1991;22:312–8.

    Article  CAS  PubMed  Google Scholar 

  30. Licastro F, Pedrini S, Ferri C, Casadei V, Govoni M, Pession A, et al. Gene polymorphism affecting α1–antichymotrypsin and interleukin–1 plasma levels increases Alzheimer’s disease risk. Ann Neurol. 2001;48:388–91.

    Article  Google Scholar 

  31. Yao CH, Lin KJ, Weng CC, Hsiao IT, Ting YS, Yen TC, et al. GMP-compliant automated synthesis of [(18)F]AV-45 (Florbetapir F18) for imaging beta-amyloid plaques in human brain. Appl Radiat Isot. 2010;68:2293–7.

    Article  CAS  PubMed  Google Scholar 

  32. Lin KJ, Hsu WC, Hsiao IT, Wey SP, Jin LW, Skovronsky D, et al. Whole-body biodistribution and brain PET imaging with [18F]AV-45, a novel amyloid imaging agent – a pilot study. Nucl Med Biol. 2010;37:497–508.

    Article  CAS  PubMed  Google Scholar 

  33. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:273–89.

    Article  CAS  PubMed  Google Scholar 

  34. Hsiao IT, Huang CC, Hsieh CJ, Hsu WC, Wey SP, Yen TC, et al. Correlation of early-phase 18F-florbetapir (AV-45/Amyvid) PET images to FDG images: preliminary studies. Eur J Nucl Med Mol Imaging. 2012;39:613–20.

    Article  CAS  PubMed  Google Scholar 

  35. Ashburner J, Friston KJ. Unified segmentation. Neuroimage. 2005;26:839–51.

    Article  PubMed  Google Scholar 

  36. Madsen K, Hasselbalch BJ, Frederiksen KS, Haahr ME, Gade A, Law I, et al. Lack of association between prior depressive episodes and cerebral [11C]PiB binding. Neurobiol Aging. 2012;33:2334–42.

    Article  CAS  PubMed  Google Scholar 

  37. Camus V, Payoux P, Barré L, Desgranges B, Voisin T, Tauber C, et al. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur J Nucl Med Mol Imaging. 2012;39:621–31.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Driscoll I, Zhou Y, An Y, Sojkova J, Davatzikos C, Kraut MA, et al. Lack of association between 11C-PiB and longitudinal brain atrophy in non-demented older individuals. Neurobiol Aging. 2011;32:2123–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Lavretsky H, Siddarth P, Kepe V, Ercoli LM, Miller KJ, Burggren AC, et al. Depression and anxiety symptoms are associated with cerebral FDDNP-PET binding in middle-aged and older nondemented adults. Am J Geriatr Psychiatr. 2009;17:493–502.

    Article  Google Scholar 

  40. Rowe CC, Ackerman U, Browne W, Mulligan R, Pike KL, O’Keefe G, et al. Imaging of amyloid β in Alzheimer’s disease with 18F-BAY94-9172, a novel PET tracer: proof of mechanism. Lancet Neurol. 2008;7:129–35.

    Article  CAS  PubMed  Google Scholar 

  41. Ziolko SK, Weissfeld LA, Klunk WE, Mathis CA, Hoge JA, Lopresti BJ, et al. Evaluation of voxel-based methods for the statistical analysis of PIB PET amyloid imaging studies in Alzheimer’s disease. Neuroimage. 2006;33:94–102.

    Article  PubMed  Google Scholar 

  42. Braak H, Braak E. Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol Aging. 1997;18:351–7.

    Article  CAS  PubMed  Google Scholar 

  43. Braak H, Braak E. Staging of Alzheimer-related cortical destruction. Int Psychogeriatr. 1997;9 Suppl 1:257–61.

    Article  PubMed  Google Scholar 

  44. Cavanna AE, Trimble MR. The precuneus: a review of its functional anatomy and behavioural correlates. Brain. 2006;129:564–83.

    Article  PubMed  Google Scholar 

  45. Green KN, Billings LM, Roozendaal B, McGaugh JL, LaFerla FM. Glucocorticoids increase amyloid-beta and tau pathology in a mouse model of Alzheimer’s disease. J Neurosci. 2006;26:9047–56.

    Article  CAS  PubMed  Google Scholar 

  46. Kang JE, Cirrito JR, Dong H, Csernansky JG, Holtzman DM. Acute stress increases interstitial fluid amyloid-β via corticotropin-releasing factor and neuronal activity. Proc Natl Acad Sci U S A. 2007;104:10673–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Devanand DP, Folz M, Gorlyn M, Moeller JR, Stern Y. Questionable dementia: clinical course and predictors of outcome. J Am Geriatr Soc. 1997;45:321–8.

    CAS  PubMed  Google Scholar 

  48. Yesavage JA, O’Hara R, Kraemer H, Noda A, Taylor JL, Ferris S, et al. Modeling the prevalence and incidence of Alzheimer’s disease and mild cognitive impairment. J Psychiatr Res. 2002;36:281–6.

    Article  PubMed  Google Scholar 

  49. Levine 3rd H, Walker LC. Molecular polymorphism of Aβ in Alzheimer’s disease. Neurobiol Aging. 2010;31:542–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Gearing M, Mirra SS, Hedreen JC, Sumi SM, Hansen LA, Heyman A. The Consortium to Establish a Registry for Alzheimer’s Disease (CERAD). Part X. Neuropathology confirmation of the clinical diagnosis of Alzheimer’s disease. Neurology. 1995;45:461–6.

    Article  CAS  PubMed  Google Scholar 

  51. Pearl GS. Diagnosis of Alzheimer’s disease in a community hospital-based brain bank program. South Med J. 1997;90:720–2.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Avid Radiopharmaceuticals Inc. (Philadelphia, PA) for providing the precursor for the preparation of 18F-florbetapir. This study was carried out with financial support from the National Science Council, Taiwan (NSC 95-2221-E-009-193-MY2, NSC 101-2314-B-182-061-MY2, NSC 100-2314-B-182A-091-MY3), and grants from the Research Fund of Chang Gung Memorial Hospital (CMRPG371771, CMRPG290093, and CMRPD1C0381).

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chia-Yih Liu or Kun-Ju Lin.

Additional information

Kuan-Yi Wu and Ing-Tsung Hsiao contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, KY., Hsiao, IT., Chen, CS. et al. Increased brain amyloid deposition in patients with a lifetime history of major depression: evidenced on 18F-florbetapir (AV-45/Amyvid) positron emission tomography. Eur J Nucl Med Mol Imaging 41, 714–722 (2014). https://doi.org/10.1007/s00259-013-2627-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2627-0

Keywords

Navigation