Skip to main content
Log in

Complementary roles of tumour specific PET tracer 18F-FAMT to 18F-FDG PET/CT for the assessment of bone metastasis

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The usefulness of 18F-FDG PET/CT for bone metastasis evaluation has already been established. The amino acid PET tracer [18F]-3-fluoro-alpha-methyl tyrosine (18F-FAMT) has been reported to be highly specific for malignancy. We evaluated the additional value of 18F-FAMT PET/CT to complement 18F-FDG PET/CT in the evaluation of bone metastasis.

Methods

This retrospective study included 21 patients with bone metastases of various cancers who had undergone both 18F-FDG and 18F-FAMT PET/CT within 1 month of each other. 18F-FDG-avid bone lesions suspicious for malignancy were carefully selected based on the cut-off value for malignancy, and the SUVmax of the 18F-FAMT in the corresponding lesions were evaluated.

Results

A total of 72 18F-FDG-positive bone lesions suspected to be metastases in the 21 patients were used as the reference standard. 18F-FAMT uptake was found in 87.5 % of the lesions. In the lesions of lung cancer origin, the uptake of the two tracers showed a good correlation (40 lesions, r = 0.68, P < 0.01). Bone metastatic lesions of oesophageal cancer showed the highest average of 18F-FAMT uptake. Bone metastatic lesions of squamous cell carcinoma showed higher 18F-FAMT uptake than those of adenocarcinoma. No significant difference in 18F-FAMT uptake was seen between osteoblastic and osteolytic bone metastatic lesions.

Conclusion

The usefulness of 18F-FAMT PET/CT for bone metastasis detection regardless of the lesion phenotype was demonstrated. The fact that 18F-FAMT uptake was confirmed by 18F-FDG uptake suggests that 18F-FAMT PET/CT has the potential to complement 18F-FDG PET/CT for the detection of bone metastases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bray F, Jemal A, Grey N, Ferlay J, Forman D. Global cancer transitions according to the Human Development Index (2008–2030): a population-based study. Lancet Oncol. 2012;13(8):790–801. doi:10.1016/S1470-2045(12)70211-5.

    Article  PubMed  Google Scholar 

  2. Mackiewicz-Wysocka M, Pankowska M, Wysocki PJ. Progress in the treatment of bone metastases in cancer patients. Expert Opin Investig Drugs. 2012;21(6):785–95. doi:10.1517/13543784.2012.679928.

    Article  PubMed  CAS  Google Scholar 

  3. Yu HH, Tsai YY, Hoffe SE. Overview of diagnosis and management of metastatic disease to bone. Cancer Control. 2012;19(2):84–91.

    PubMed  Google Scholar 

  4. Talbot JN, Paycha F, Balogova S. Diagnosis of bone metastasis: recent comparative studies of imaging modalities. Q J Nucl Med Mol Imaging. 2011;55(4):374–410.

    PubMed  CAS  Google Scholar 

  5. Murtz P, Krautmacher C, Traber F, Gieseke J, Schild HH, Willinek WA. Diffusion-weighted whole-body MR imaging with background body signal suppression: a feasibility study at 3.0 Tesla. Eur Radiol. 2007;17(12):3031–7.

    Article  PubMed  Google Scholar 

  6. Even-Sapir E, Metser U, Mishani E, Lievshitz G, Lerman H, Leibovitch I. The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med. 2006;47(2):287–97.

    PubMed  Google Scholar 

  7. Schirrmeister H, Buck A, Guhlmann A, Reske SN. Anatomical distribution and sclerotic activity of bone metastases from thyroid cancer assessed with F-18 sodium fluoride positron emission tomography. Thyroid. 2001;11(7):677–83. doi:10.1089/105072501750362754.

    Article  PubMed  CAS  Google Scholar 

  8. Schirrmeister H, Glatting G, Hetzel J, Nussle K, Arslandemir C, Buck AK, et al. Prospective evaluation of the clinical value of planar bone scans, SPECT, and 18F-labeled NaF PET in newly diagnosed lung cancer. J Nucl Med. 2001;42(12):1800–4.

    PubMed  CAS  Google Scholar 

  9. Schirrmeister H, Guhlmann A, Elsner K, Kotzerke J, Glatting G, Rentschler M, et al. Sensitivity in detecting osseous lesions depends on anatomic localization: planar bone scintigraphy versus 18F PET. J Nucl Med. 1999;40(10):1623–9.

    PubMed  CAS  Google Scholar 

  10. Daldrup-Link HE, Franzius C, Link TM, Laukamp D, Sciuk J, Jurgens H, et al. Whole-body MR imaging for detection of bone metastases in children and young adults: comparison with skeletal scintigraphy and FDG PET. AJR Am J Roentgenol. 2001;177(1):229–36.

    Article  PubMed  CAS  Google Scholar 

  11. Grant FD, Fahey FH, Packard AB, Davis RT, Alavi A, Treves ST. Skeletal PET with 18F-fluoride: applying new technology to an old tracer. J Nucl Med. 2008;49(1):68–78. doi:10.2967/jnumed.106.037200.

    Article  PubMed  Google Scholar 

  12. Abe K, Sasaki M, Kuwabara Y, Koga H, Baba S, Hayashi K, et al. Comparison of 18FDG-PET with 99mTc-HMDP scintigraphy for the detection of bone metastases in patients with breast cancer. Ann Nucl Med. 2005;19(7):573–9. doi:10.1007/Bf02985050.

    Article  PubMed  Google Scholar 

  13. Kong F-L, Yang DJ. Amino acid transporter-targeted radiotracers for molecular imaging in oncology. Curr Med Chem. 2012;19(20):3271–81. doi:10.2174/092986712801215946.

    Article  PubMed  CAS  Google Scholar 

  14. Christensen HN. Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev. 1990;70(1):43–77.

    PubMed  CAS  Google Scholar 

  15. McGivan JD, Pastor-Anglada M. Regulatory and molecular aspects of mammalian amino acid transport. Biochem J. 1994;299(Pt 2):321–34.

    PubMed  CAS  Google Scholar 

  16. Oxender DL, Christensen HN. Evidence for two types of mediation of neutral and amino-acid transport in Ehrlich cells. Nature. 1963;197:765–7.

    Article  PubMed  CAS  Google Scholar 

  17. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H. Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem. 1998;273(37):23629–32.

    Article  PubMed  CAS  Google Scholar 

  18. Yanagida O, Kanai Y, Chairoungdua A, Kim DK, Segawa H, Nii T, et al. Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta. 2001;1514(2):291–302.

    Article  PubMed  CAS  Google Scholar 

  19. Nawashiro H, Otani N, Shinomiya N, Fukui S, Ooigawa H, Shima K, et al. L-type amino acid transporter 1 as a potential molecular target in human astrocytic tumors. Int J Cancer. 2006;119(3):484–92. doi:10.1002/Ijc.21866.

    Article  PubMed  CAS  Google Scholar 

  20. Goudarzi B, Kishimoto R, Komatsu S, Ishikawa H, Yoshikawa K, Kandatsu S, et al. Detection of bone metastases using diffusion weighted magnetic resonance imaging: comparison with C-11-methionine PET and bone scintigraphy. Magn Reson Imaging. 2010;28(3):372–9. doi:10.1016/j.mri.2009.12.008.

    Article  PubMed  Google Scholar 

  21. Tomiyoshi K, Amed K, Muhammad S, Higuchi T, Inoue T, Endo K, et al. Synthesis of isomers of F-18-labelled amino acid radiopharmaceutical: position 2- and 3-L-F-18-alpha-methyltyrosine using a separation and purification system. Nucl Med Commun. 1997;18(2):169–75. doi:10.1097/00006231-199702000-00013.

    Article  PubMed  CAS  Google Scholar 

  22. Inoue T, Tomiyoshi K, Higuichi T, Ahmed K, Sarwar M, Aoyagi K, et al. Biodistribution studies on L-3-[fluorine-18]fluoro-alpha-methyl tyrosine: a potential tumor-detecting agent. J Nucl Med. 1998;39(4):663–7.

    PubMed  CAS  Google Scholar 

  23. Inoue T, Shibasaki T, Oriuchi N, Aoyagi K, Tomiyoshi K, Amano S, et al. 18F-alpha-methyl tyrosine PET studies in patients with brain tumors. J Nucl Med. 1999;40(3):399–405.

    PubMed  CAS  Google Scholar 

  24. Kaira K, Oriuchi N, Shimizu K, Ishikita T, Higuchi T, Imai H, et al. Correlation of angiogenesis with 18F-FMT and 18F-FDG uptake in non-small cell lung cancer. Cancer Sci. 2009;100(4):753–8. doi:10.1111/j.1349-7006.2008.01077.x.

    Article  PubMed  CAS  Google Scholar 

  25. Miyakubo M, Oriuchi N, Tsushima Y, Higuchi T, Koyama K, Arai K, et al. Diagnosis of maxillofacial tumor with L-3-[F-18]-fluoro-alpha-methyltyrosine (FMT) PET: a comparative study with FDG-PET. Ann Nucl Med. 2007;21(2):129–35.

    Article  PubMed  CAS  Google Scholar 

  26. Miyashita G, Higuchi T, Oriuchi N, Arisaka Y, Hanaoka H, Tominaga H, et al. 18F-FAMT uptake correlates with tumor proliferative activity in oral squamous cell carcinoma: comparative study with 18F-FDG PET and immunohistochemistry. Ann Nucl Med. 2010;24(8):579–84. doi:10.1007/s12149-010-0398-2.

    Article  PubMed  Google Scholar 

  27. Kaira K, Oriuchi N, Imai H, Shimizu K, Yanagitani N, Sunaga N, et al. Prognostic significance of L-type amino acid transporter 1 (LAT1) and 4F2 heavy chain (CD98) expression in stage I pulmonary adenocarcinoma. Lung Cancer. 2009;66(1):120–6. doi:10.1016/j.lungcan.2008.12.015.

    Article  PubMed  Google Scholar 

  28. Kaira K, Oriuchi N, Otani Y, Shimizu K, Tanaka S, Imai H, et al. Fluorine-18-alpha-methyltyrosine positron emission tomography for diagnosis and staging of lung cancer: a clinicopathologic study. Clin Cancer Res. 2007;13(21):6369–78. doi:10.1158/1078-0432.Ccr-07-1294.

    Article  PubMed  CAS  Google Scholar 

  29. Sato N, Inoue T, Tomiyoshi K, Aoki J, Oriuchi N, Takahashi A, et al. Gliomatosis cerebri evaluated by F-18 alpha-methyl tyrosine positron-emission tomography. Neuroradiology. 2003;45(10):700–7. doi:10.1007/s00234-003-1057-2.

    Article  PubMed  CAS  Google Scholar 

  30. Inoue T, Koyama K, Oriuchi N, Alyafei S, Yuan Z, Suzuki H, et al. Detection of malignant tumors: whole-body PET with fluorine 18 alpha-methyl tyrosine versus FDG – preliminary study. Radiology. 2001;220(1):54–62.

    PubMed  CAS  Google Scholar 

  31. Watanabe H, Inoue T, Shinozaki T, Yanagawa T, Ahmed AR, Tomiyoshi K, et al. PET imaging of musculoskeletal tumours with fluorine-18 alpha-methyltyrosine: comparison with fluorine-18 fluorodeoxyglucose PET. Eur J Nucl Med Mol Imaging. 2000;27(10):1509–17. doi:10.1007/s002590000344.

    Article  CAS  Google Scholar 

  32. Wiriyasermkul P, Nagamori S, Tominaga H, Oriuchi N, Kaira K, Nakao H, et al. Transport of 3-fluoro-L-alpha-methyl-tyrosine by tumor-upregulated L-type amino acid transporter 1: a cause of the tumor uptake in PET. J Nucl Med. 2012;53(8):1253–61. doi:10.2967/jnumed.112.103069.

    Article  PubMed  CAS  Google Scholar 

  33. Watanabe H, Shinozaki T, Yanagawa T, Aoki J, Tokunaga M, Inoue T, et al. Glucose metabolic analysis of musculoskeletal tumours using 18fluorine-FDG PET as an aid to preoperative planning. J Bone Joint Surg Br. 2000;82(5):760–7.

    Article  PubMed  CAS  Google Scholar 

  34. Fujimoto R, Higashi T, Nakamoto Y, Hara T, Lyshchik A, Ishizu K, et al. Diagnostic accuracy of bone metastases detection in cancer patients: comparison between bone scintigraphy and whole-body FDG-PET. Ann Nucl Med. 2006;20(6):399–408.

    Article  PubMed  Google Scholar 

  35. Rosen RS, Fayad L, Wahl RL. Increased F-18-FDG uptake in degenerative disease of the spine: characterization with F-18-FDG PET/CT. J Nucl Med. 2006;47(8):1274–80.

    PubMed  CAS  Google Scholar 

  36. Costelloe CM, Murphy WA, Chasen BA. Musculoskeletal pitfalls in F-18-FDG PET/CT: pictorial review. AJR Am J Roentgenol. 2009;193(3):S25–30. doi:10.2214/Ajr.07.7138.

    Google Scholar 

  37. Hamaoka T, Madewell JE, Podoloff DA, Hortobagyi GN, Ueno NT. Bone imaging in metastatic breast cancer. J Clin Oncol. 2004;22(14):2942–53. doi:10.1200/jco.2004.08.181.

    Article  PubMed  Google Scholar 

  38. Qu XH, Huang XL, Yan WL, Wu LM, Dai KR. A meta-analysis of 18FDG-PET-CT, 18FDG-PET, MRI and bone scintigraphy for diagnosis of bone metastases in patients with lung cancer. Eur J Radiol. 2012;81(5):1007–15. doi:10.1016/j.ejrad.2011.01.126.

    Article  PubMed  Google Scholar 

  39. Stecco A, Lombardi M, Leva L, Brambilla M, Negru E, Delli Passeri S, et al. Diagnostic accuracy and agreement between whole-body diffusion MRI and bone scintigraphy in detecting bone metastases. Radiol Med. 2013;118(3):165–75. doi:10.1007/s11547-012-0870-2.

    Google Scholar 

  40. Hsu W, Hearty TM. Radionuclide imaging in the diagnosis and management of orthopaedic disease. J Am Acad Orthop Surg. 2012;20(3):151–9. doi:10.5435/JAAOS-20-03-151.

    Article  PubMed  Google Scholar 

  41. Ghanem N, Uhl M, Brink I, Schafer O, Kelly T, Moser E, et al. Diagnostic value of MRI in comparison to scintigraphy, PET, MS-CT and PET/CT for the detection of metastases of bone. Eur J Radiol. 2005;55(1):41–55. doi:10.1016/j.ejrad.2005.01.016.

    Article  PubMed  CAS  Google Scholar 

  42. Peng X, Guo W, Ren T, Lou Z, Lu X, Zhang S, et al. Differential expression of the RANKL/RANK/OPG system is associated with bone metastasis in human non-small cell lung cancer. PLoS One. 2013;8(3):e58361. doi:10.1371/journal.pone.0058361.

    Article  PubMed  CAS  Google Scholar 

  43. Chatterjee S, Frew J, Mott J, McCallum H, Stevenson P, Maxwell R, et al. Variation in radiotherapy target volume definition, dose to organs at risk and clinical target volumes using anatomic (computed tomography) versus combined anatomic and molecular imaging (positron emission tomography/computed tomography): intensity-modulated radiotherapy delivered using a tomotherapy Hi Art machine: final results of the VortigERN study. Clin Oncol (R Coll Radiol). 2012;24(10):e173–9. doi:10.1016/j.clon.2012.09.004.

    Article  PubMed  CAS  Google Scholar 

  44. Lucas JD, O’Doherty MJ, Wong JCH, Bingham JB, McKee PH, Fletcher CDM, et al. Evaluation of fluorodeoxyglucose positron emission tomography in the management of soft-tissue sarcomas. J Bone Joint Surg Br. 1998;80(3):441–7. doi:10.1302/0301-620x.80b3.8232.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Professor Junichi Tamura and Associate Professor Yoshio Ohyama of the Department of General Medicine, Professor Hiroshi Koyama of the Department of Public Health, Professor Hiroyuki Kuwano and Dr. Tatsuya Miyazaki of the Department of General Surgical Science, and Dr. Kyoichi Kaira of the Oncology Center, Gunma University, for their generous support of this clinical study.

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motoho Morita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morita, M., Higuchi, T., Achmad, A. et al. Complementary roles of tumour specific PET tracer 18F-FAMT to 18F-FDG PET/CT for the assessment of bone metastasis. Eur J Nucl Med Mol Imaging 40, 1672–1681 (2013). https://doi.org/10.1007/s00259-013-2487-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2487-7

Keywords

Navigation