Skip to main content
Log in

Development of 68Ga-labelled DTPA galactosyl human serum albumin for liver function imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

The hepatic asialoglycoprotein receptor is responsible for degradation of desialylated glycoproteins through receptor-mediated endocytosis. It has been shown that imaging of the receptor density using [99mTc]diethylenetriamine pentaacetic acid (DTPA) galactosyl human serum albumin ([99mTc]GSA) allows non-invasive determination of functional hepatocellular mass. Here we present the synthesis and evaluation of [68Ga]GSA for the potential use with positron emission tomography (PET).

Methods

Labelling of GSA with 68Ga was carried out using a fractionated elution protocol. For quality control thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC) and size exclusion chromatography (SEC) techniques were evaluated. Stability of [68Ga]GSA was studied in phosphate-buffered saline (PBS) and human serum. For in vivo evaluation [68Ga]GSA distribution in Lewis rats was compared with [99mTc]GSA by using a dual isotope protocol. PET and planar imaging studies were performed using the same scaled molar dose of [68Ga]GSA and [99mTc]GSA. Time-activity curves (TAC) for heart and liver were generated and corresponding parameters calculated (t50, t90).

Results

[68Ga]GSA can be produced with high radiochemical purity. The best TLC methods for determining potential free 68Ga include 0.1 M sodium citrate as eluent. None of the TLC methods tested were able to determine potential colloids. This can be achieved by SEC. HPLC confirmed high radiochemical purity (>98 %). Stability after 120 min incubation at 37 °C was high in PBS (>95 % intact tracer) and low in human serum (∼27 % intact tracer). Biodistribution studies simultaneously injecting both tracers showed comparable liver uptake, whereas activity concentration in blood was higher for [68Ga]GSA compared to [99mTc]GSA. The [99mTc]GSA TACs exhibited a small degree of hepatic metabolism compared to the [68Ga]GSA curves. The mean [68Ga]GSA t90 was higher than the mean t90 for [99mTc]GSA. The mean [68Ga]GSA t50 was not significantly different from the mean t50 for [99mTc]GSA.

Conclusion

This study provides a promising new 68Ga-labelled compound based on a commercially used kit for imaging the functional hepatocellular mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. de Graaf W, Bennink RJ, Veteläinen R, van Gulik TM. Nuclear imaging techniques for the assessment of hepatic function in liver surgery and transplantation. J Nucl Med 2010;51:742–52.

    Article  PubMed  Google Scholar 

  2. Hoekstra LT, de Graaf W, Nibourg GA, Heger M, Bennink RJ, Stieger B, et al. Physiological and biochemical basis of clinical liver function tests: a review. Ann Surg 2013;257:27–36.

    Article  PubMed  Google Scholar 

  3. Kaibori M, Ha-Kawa SK, Maehara M, Ishizaki M, Matsui K, Sawada S, et al. Usefulness of Tc-99m-GSA scintigraphy for liver surgery. Ann Nucl Med 2011;25:593–602.

    Article  PubMed  Google Scholar 

  4. Virgolini I, Müller C, Klepetko W, Angelberger P, Bergmann H, O’Grady J, et al. Decreased hepatic function in patients with hepatoma or liver metastasis monitored by a hepatocyte specific galactosylated radioligand. Br J Cancer 1990;61:937–41.

    Article  PubMed  CAS  Google Scholar 

  5. Kurtaran A, Li SR, Raderer M, Leimer M, Müller C, Pidlich J, et al. Technetium-99m-galactosyl-neoglycoalbumin combined with iodine-123-Tyr-(A14)-insulin visualizes human hepatocellular carcinomas. J Nucl Med 1995;36:1875–81.

    PubMed  CAS  Google Scholar 

  6. Virgolini I, Kornek G, Höbart J, Li SR, Raolerer M, Bergmann H, et al. Scintigraphic evaluation of functional hepatic mass in patients with advanced breast cancer. Br J Cancer 1993;68:549–54.

    Article  PubMed  CAS  Google Scholar 

  7. Bennink RJ, Tulchinsky M, de Graaf W, Kadry Z, van Gulik TM. Liver function testing with nuclear medicine techniques is coming of age. Semin Nucl Med 2012;42:124–37.

    Article  PubMed  Google Scholar 

  8. Virgolini I, Müller C, Angelberger P, Höbart J, Bergmann H, Sinzinger H. Functional liver imaging with 99Tcm-galactosyl-neoglycoalbumin (NGA) in alcoholic liver cirrhosis and liver fibrosis. Nucl Med Commun 1991;12:507–17.

    Article  PubMed  CAS  Google Scholar 

  9. Mansi L, Virgolini I. Diagnosis and therapy are walking together on radiopeptides’ avenue. Eur J Nucl Med Mol Imaging 2011;38:605–12.

    Article  PubMed  Google Scholar 

  10. D’Arienzo M, Chiaramida P, Chiacchiararelli L, Coniglio A, Cianni R, Salvatori R, et al. 90Y PET-based dosimetry after selective internal radiotherapy treatments. Nucl Med Commun 2012;33:633–40.

    Article  PubMed  Google Scholar 

  11. Vera DR, Krohn KA, Stadalnik RC, Scheibe PO. Tc-99m-galactosyl-neoglycoalbumin: in vivo characterization of receptor-mediated binding to hepatocytes. Radiology 1984;151:191–6.

    PubMed  CAS  Google Scholar 

  12. Vera DR, Krohn KA, Stadalnik RC, Scheibe PO. Tc-99m galactosyl-neoglycoalbumin: in vitro characterization of receptor-mediated binding. J Nucl Med 1984;25:779–87.

    PubMed  CAS  Google Scholar 

  13. Virgolini I, Angelberger P, Müller C, O’Grady J, Sinzinger H. 99mTc-neoglycoalbumin (NGA)-binding to human hepatic binding protein (HBP) in vitro. Br J Clin Pharmacol 1990;29:207–14.

    Article  PubMed  CAS  Google Scholar 

  14. Kokudo N, Vera DR, Makuuchi M. Clinical application of TcGSA. Nucl Med Biol 2003;30:845–9.

    Article  PubMed  CAS  Google Scholar 

  15. Marshall JS, Green AM, Pensky J, Williams S, Zinn A, Carlson DM. Measurement of circulating desialylated glycoproteins and correlation with hepatocellular damage. J Clin Invest 1974;54:555–62.

    Article  PubMed  CAS  Google Scholar 

  16. Vera DR, Stadalnik RC, Trudeau WL, Scheibe PO, Krohn KA. Measurement of receptor concentration and forward-binding rate constant via radiopharmacokinetic modeling of technetium-99m-galactosyl-neoglycoalbumin. J Nucl Med 1991;32:1169–76.

    PubMed  CAS  Google Scholar 

  17. Kudo M, Todo A, Ikekubo K, Yamamoto K, Vera DR, Stadalnik RC. Quantitative assessment of hepatocellular function through in vivo radioreceptor imaging with technetium 99m galactosyl human serum albumin. Hepatology 1993;17:814–9.

    PubMed  CAS  Google Scholar 

  18. Vera DR, Stadalnik RC, Metz CE, Pimstone NR. Diagnostic performance of a receptor-binding radiopharmacokinetic model. J Nucl Med 1996;37:160–4.

    PubMed  CAS  Google Scholar 

  19. Decristoforo C. Gallium-68—a new opportunity for PET available from a long shelf-life generator—automation and applications. Curr Radiopharm 2012;5:212–20.

    Article  PubMed  CAS  Google Scholar 

  20. Putzer D, Gabriel M, Henninger B, Kendler D, Uprimny C, Dobrozemsky G, et al. Bone metastases in patients with neuroendocrine tumor: 68Ga-DOTA-Tyr3-octreotide PET in comparison to CT and bone scintigraphy. J Nucl Med 2009;50:1214–21.

    Article  PubMed  Google Scholar 

  21. Kudo M, Washino K, Yamamichi Y, Ikekubo K. Synthesis and radiolabeling of galactosyl human serum albumin. Methods Enzymol 1994;247:383–94.

    Article  PubMed  CAS  Google Scholar 

  22. Breeman WA, de Jong M, de Blois E, Bernard BF, Konijnenberg M, Krenning EP. Radiolabelling DOTA-peptides with 68Ga. Eur J Nucl Med Mol Imaging 2005;32:478–85.

    Article  PubMed  CAS  Google Scholar 

  23. Kudo M, Vera DR, Trudeau WL, Stadalnik RC. Hepatic uptake of [99mTc]galactosyl-neoglycoalbumin is sensitive to receptor quantity. Int J Rad Appl Instrum B 1991;18:663–6.

    Article  PubMed  CAS  Google Scholar 

  24. Miki K, Kubota K, Inoue Y, Vera DR, Makuuchi M. Receptor measurements via Tc-GSA kinetic modeling are proportional to functional hepatocellular mass. J Nucl Med 2001;42:733–7.

    PubMed  CAS  Google Scholar 

  25. Stadalnik RC, Vera DR. The evolution of (99m)Tc-NGA as a clinically useful receptor-binding radiopharmaceutical. Nucl Med Biol 2001;28:499–503.

    Article  PubMed  CAS  Google Scholar 

  26. Reichert D, Lewis J, Anderson C. Metal complexes as diagnostic tools. Coord Chem Rev 1999;184:3–66.

    Article  CAS  Google Scholar 

  27. Anderson WT, Strand M. Stability, targeting, and biodistribution of scandium-46- and gallium-67-labeled monoclonal antibody in erythroleukemic mice. Cancer Res 1985;45:2154–8.

    PubMed  CAS  Google Scholar 

  28. Koop B, Reske SN, Neumaier B. Labelling of a monoclonal antibody with 68Ga using three DTPA-based bifunctional ligands and their in vitro evaluation for application in radioimmunotherapy. Radiochim Acta 2007;95:39–42.

    Article  CAS  Google Scholar 

  29. Miki K, Kubota K, Kokudo N, Inoue Y, Bandai Y, Makuuchi M. Asialoglycoprotein receptor and hepatic blood flow using technetium-99m-DTPA-galactosyl human serum albumin. J Nucl Med 1997;38:1798–807.

    PubMed  CAS  Google Scholar 

  30. Vera DR. Gallium-labeled deferoxamine-galactosyl-neoglycoalbumin: a radiopharmaceutical for regional measurement of hepatic receptor biochemistry. J Nucl Med 1992;33:1160–6.

    PubMed  CAS  Google Scholar 

  31. Knetsch PA, Petrik M, Griessinger CM, Rangger C, Fani M, Kesenheimer C, et al. [68Ga]NODAGA-RGD for imaging alphavbeta3 integrin expression. Eur J Nucl Med Mol Imaging 2011;38:1303–12.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Nihon Medi-Physics Co., Ltd. (Tokyo, Japan) is acknowledged for providing the GSA kits.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Haubner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haubner, R., Vera, D.R., Farshchi-Heydari, S. et al. Development of 68Ga-labelled DTPA galactosyl human serum albumin for liver function imaging. Eur J Nucl Med Mol Imaging 40, 1245–1255 (2013). https://doi.org/10.1007/s00259-013-2397-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2397-8

Keywords

Navigation