Skip to main content
Log in

Microalbuminuria predicts silent myocardial ischaemia in type 2 diabetes patients

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Myocardial ischaemia is frequently silent in patients with type 2 diabetes. Although it has been proposed as a potential screening tool, the role of myocardial perfusion single photon emission computed tomography (MPS) has recently been questioned, due to the low prevalence of positive scans and the low rate of cardiac events. The aim of this study was to assess if pretest clinical variables can identify a subgroup of asymptomatic patients with type 2 diabetes at risk of silent myocardial ischaemia and a subsequent poor outcome

Methods

This prospective study included 77 patients (50 men, mean age 63 ± 9 years) with type 2 diabetes and no known coronary artery disease (CAD) or angina pectoris who underwent gated MPS to screen for CAD between March 2006 and October 2008. MPS images were interpreted using a semiquantitative visual 20-segment model to define summed stress, rest and difference scores. Ischaemia was defined as a sum difference score (SDS) ≥2. Patients were followed-up (median 4.1 years, range 0.8 – 6.1 years) and cardiac hard events (cardiac death or nonfatal myocardial infarction) were recorded.

Results

Silent ischaemia was detected in 25 of the 77 patients (32 %). Specifically, 10 patients (13 %) had mild ischaemia (SDS 2 to ≤4) and 15 patients (19 %) had severe ischaemia (SDS >4). In univariate binary logistic analysis, microalbuminuria was the only significant predictor of silent ischaemia on MPS (odds ratio 4.42, 95 % CI 1.27 – 15.40; P = 0.019). The overall accuracy of microalbuminuria for predicting silent ischaemia was 71.4 % and was 89.6 % for predicting severe ischaemia. Kaplan-Meier curves showed no significant group differences in 5-year cardiac event-free survival between patients with and those without microalbuminuria, or between patients with SDS ≥2 and those with SDS <2. In contrast, 5-year event-free survival was significantly lower in patients with SDS >4 than in patients with SDS ≤4: 55.6 % (95 % CI 39.0 – 72.2 %) vs. 94.5 % (95 % CI: 91.4 – 97.6 %), respectively (Breslow test, chi-square 20.9, P < 0.001). Median cardiac event-free survival was not observed in the whole group, while the 25th percentile of cardiac event-free survival was reached only in patients with SDS >4 (2.3 years). In univariate Cox regression analysis, SDS >4 predicted cardiac event-free survival (hazard ratio 12.87, 95 % CI 2.86 – 27.98; P = 0.001), while SDS ≥2 did not (hazard ratio 2.78, 95 % CI 0.62 – 12.46, P = 0.16).

Conclusion

In this group of patients with type 2 diabetes, microalbuminuria was the only predictor of silent ischaemia on MPS. Assessment of microalbuminuria should be routinely considered among the first risk stratification steps for CAD in patients with type 2 diabetes, even though severe ischaemia on MPS is a major predictor of cardiac event-free survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bonow RO, Bohannon N, Hazzard W. Risk stratification in coronary artery disease and special populations. Am J Med. 1996;101:4A17S–22S.

    PubMed  CAS  Google Scholar 

  2. Bax JJ, Inzucchi SE, Bonow RO, Schuijf JD, Freeman MR, Barrett EJ. Cardiac imaging for risk stratification in diabetes. Diabetes Care. 2007;30:1295–304.

    Article  PubMed  Google Scholar 

  3. Kang X, Berman DS, Lewin H, Miranda R, Erel J, Friedman JD, et al. Comparative ability of myocardial perfusion single-photon emission computed tomography to detect coronary artery disease in patients with and without diabetes mellitus. Am Heart J. 1999;137:949–57.

    Article  PubMed  CAS  Google Scholar 

  4. BARI Investigators. Influence of diabetes on 5-year mortality and morbidity in a randomized trial comparing CABG and PTCA in patients with multivessel disease: the Bypass Angioplasty Revascularization Investigation (BARI). Circulation. 1997;96:1761–9.

    Article  Google Scholar 

  5. Wackers FJ, Young LH, Inzucchi SE, Chyun DA, Davey JA, Barrett EJ, et al. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the DIAD study. Diabetes Care. 2004;27:1954–61.

    Article  PubMed  Google Scholar 

  6. Miller TD, Redberg RF, Wackers FJ. Screening asymptomatic diabetic patients for coronary artery disease: why not? J Am Coll Cardiol. 2006;48:761–4.

    Article  PubMed  Google Scholar 

  7. Bax JJ, Young LH, Frye RL, Bonow RO, Steinberg HO, Barrett EJ. Screening for coronary artery disease in patients with diabetes. Diabetes Care. 2007;30:2729–36.

    Article  PubMed  Google Scholar 

  8. Young LH, Wackers FJ, Chyun DA, Davey JA, Barrett EJ, Taillefer R, et al. Cardiac outcomes after screening for asymptomatic coronary artery disease in patients with type 2 diabetes: the DIAD study: a randomized controlled trial. JAMA. 2009;301:1547–55.

    Article  PubMed  CAS  Google Scholar 

  9. American Diabetes Association. Consensus development conference on the diagnosis of coronary heart disease in people with diabetes: 10–11 February 1998, Miami, Florida. Diabetes Care. 1998;21:1551–9.

    Article  Google Scholar 

  10. Zellweger MJ, Hachamovitch R, Kang X, Hayes SW, Friedman JD, Germano G, et al. Threshold, incidence, and predictors of prognostically high-risk silent ischemia in asymptomatic patients without prior diagnosis of coronary artery disease. J Nucl Cardiol. 2009;16:193–200.

    Article  PubMed  Google Scholar 

  11. Bax JJ, Bonow RO, Tschope D, Inzucchi SE, Barrett E. The potential of myocardial perfusion scintigraphy for risk stratification of asymptomatic patients with type 2 diabetes. J Am Coll Cardiol. 2006;48:754–60.

    Article  PubMed  Google Scholar 

  12. Wackers FJ, Chyun DA, Young LH, Heller GV, Iskandrian AE, Davey JA, et al. Resolution of asymptomatic myocardial ischemia in patients with type 2 diabetes in the Detection of Ischemia in Asymptomatic Diabetics (DIAD) study. Diabetes Care. 2007;30:2892–8.

    Article  PubMed  Google Scholar 

  13. Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care. 1985;8:491–8.

    Article  PubMed  CAS  Google Scholar 

  14. Berman DS, Hachamovitch R, Kiat H, Cohen I, Cabico JA, Wang FP, et al. Incremental value of prognostic testing in patients with known or suspected ischemic heart disease: a basis for optimal utilization of exercise technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography. J Am Coll Cardiol. 1995;26:639–47.

    Article  PubMed  CAS  Google Scholar 

  15. Zellweger MJ, Weinbacher M, Zutter AW, Jeger RV, Mueller-Brand J, Kaiser C, et al. Long-term outcome of patients with silent versus symptomatic ischemia six months after percutaneous coronary intervention and stenting. J Am Coll Cardiol. 2003;42:33–40.

    Article  PubMed  Google Scholar 

  16. Hachamovitch R, Berman DS, Kiat H, Cohen I, Cabico JA, Friedman J, et al. Exercise myocardial perfusion SPECT in patients without known coronary artery disease: incremental prognostic value and use in risk stratification. Circulation. 1996;93:905–14.

    Article  PubMed  CAS  Google Scholar 

  17. Berman DS, Abidov A, Kang X, Hayes SW, Friedman JD, Sciammarella MG, et al. Prognostic validation of a 17-segment score derived from a 20-segment score for myocardial perfusion SPECT interpretation. J Nucl Cardiol. 2004;11:414–23.

    Article  PubMed  Google Scholar 

  18. Nakajima K, Kusuoka H, Nishimura S, Yamashina A, Nishimura T. Prognostic value of myocardial perfusion and ventricular function in a Japanese multicenter cohort study (J-ACCESS): the first-year total events and hard events. Ann Nucl Med. 2009;23:373–81.

    Article  PubMed  Google Scholar 

  19. Nakajima K, Yamasaki Y, Kusuoka H, Izumi T, Kashiwagi A, Kawamori R, et al. Cardiovascular events in Japanese asymptomatic patients with type 2 diabetes: a 1-year interim report of a J-ACCESS 2 investigation using myocardial perfusion imaging. Eur J Nucl Med Mol Imaging. 2009;36:2049–57.

    Article  PubMed  Google Scholar 

  20. Djaberi R, Roodt J, Schuijf JD, Rabelink TJ, de Koning EJ, Pereira AM, et al. Endothelial dysfunction in diabetic patients with abnormal myocardial perfusion in the absence of epicardial obstructive coronary artery disease. J Nucl Med. 2009;50:1980–6.

    Article  PubMed  CAS  Google Scholar 

  21. Schuijf JD, Shaw LJ, Wijns W, Lamb HJ, Poldermans D, de Roos A, et al. Cardiac imaging in coronary artery disease: differing modalities. Heart. 2005;91:1110–7.

    Article  PubMed  CAS  Google Scholar 

  22. Milan Study on Atherosclerosis and Diabetes (MiSAD) Group. Prevalence of unrecognized silent myocardial ischemia and its association with atherosclerotic risk factors in noninsulin-dependent diabetes mellitus. Am J Cardiol. 1997;79:134–9.

    Article  Google Scholar 

  23. Gazzaruso C, Garzaniti A, Giordanetti S, Falcone C, De Amici E, Geroldi D, et al. Assessment of asymptomatic coronary artery disease in apparently uncomplicated type 2 diabetic patients: a role for lipoprotein(a) and apolipoprotein(a) polymorphism. Diabetes Care. 2002;25:1418–24.

    Article  PubMed  Google Scholar 

  24. De Lorenzo A, Lima RS, Siqueira-Filho AG, Pantoja MR. Prevalence and prognostic value of perfusion defects detected by stress technetium-99m sestamibi myocardial perfusion single-photon emission computed tomography in asymptomatic patients with diabetes mellitus and no known coronary artery disease. Am J Cardiol. 2002;90:827–32.

    Article  PubMed  Google Scholar 

  25. Berman DS, Kang X, Hayes SW, Friedman JD, Cohen I, Abidov A, et al. Adenosine myocardial perfusion single-photon emission computed tomography in women compared with men. Impact of diabetes mellitus on incremental prognostic value and effect on patient management. J Am Coll Cardiol. 2003;41:1125–33.

    Article  PubMed  Google Scholar 

  26. Zellweger MJ, Hachamovitch R, Kang X, Hayes SW, Friedman JD, Germano G, et al. Prognostic relevance of symptoms versus objective evidence of coronary artery disease in diabetic patients. Eur Heart J. 2004;25:543–50.

    Article  PubMed  Google Scholar 

  27. Rajagopalan N, Miller TD, Hodge DO, Frye RL, Gibbons RJ. Identifying high-risk asymptomatic diabetic patients who are candidates for screening stress single-photon emission computed tomography imaging. J Am Coll Cardiol. 2005;45:43–9.

    Article  PubMed  Google Scholar 

  28. Moralidis E, Didangelos T, Arsos G, Athyros V, Mikhailidis DP. Myocardial perfusion scintigraphy in asymptomatic diabetic patients: a critical review. Diabetes Metab Res Rev. 2010;26:336–47.

    Article  PubMed  CAS  Google Scholar 

  29. Petretta M, Acampa W, Evangelista L, Daniele S, Ferro A, Cuocolo A. Impact of inducible ischemia by stress SPECT in cardiac risk assessment in diabetic patients: rationale and design of a prospective, multicenter trial. J Nucl Cardiol. 2008;15:100–4.

    Article  PubMed  Google Scholar 

  30. Acampa W, Petretta M, Evangelista L, Daniele S, Xhoxhi E, De Rimini ML, et al. Myocardial perfusion imaging and risk classification for coronary heart disease in diabetic patients. The IDIS study: a prospective, multicentre trial. Eur J Nucl Med Mol Imaging. 2012;39:387–95.

    Article  PubMed  Google Scholar 

  31. Vanzetto G, Halimi S, Hammoud T, Fagret D, Benhamou PY, Cordonnier D, et al. Prediction of cardiovascular events in clinically selected high-risk NIDDM patients. Prognostic value of exercise stress test and thallium-201 single-photon emission computed tomography. Diabetes Care. 1999;22:19–26.

    Article  PubMed  CAS  Google Scholar 

  32. Miller TD, Rajagopalan N, Hodge DO, Frye RL, Gibbons RJ. Yield of stress single-photon emission computed tomography in asymptomatic patients with diabetes. Am Heart J. 2004;147:890–6.

    Article  PubMed  Google Scholar 

  33. Scholte AJ, Schuijf JD, Kharagjitsingh AV, Dibbets-Schneider P, Stokkel MP, van der Wall EE, et al. Prevalence and predictors of an abnormal stress myocardial perfusion study in asymptomatic patients with type 2 diabetes mellitus. Eur J Nucl Med Mol Imaging. 2009;36:567–75.

    Article  PubMed  CAS  Google Scholar 

  34. Nishimura T, Nakajima K, Kusuoka H, Yamashina A, Nishimura S. Prognostic study of risk stratification among Japanese patients with ischemic heart disease using gated myocardial perfusion SPECT: J-ACCESS study. Eur J Nucl Med Mol Imaging. 2008;35:319–28.

    Article  PubMed  Google Scholar 

  35. Giugliano D, Acampora R, De Rosa N, Quatraro A, De Angelis L, Ceriello A, et al. Coronary artery disease in type-2 diabetes mellitus: a scintigraphic study. Diabete Metab. 1993;19:463–6.

    PubMed  CAS  Google Scholar 

  36. Rutter MK, McComb JM, Brady S, Marshall SM. Silent myocardial ischemia and microalbuminuria in asymptomatic subjects with non-insulin-dependent diabetes mellitus. Am J Cardiol. 1999;83:27–31.

    Article  PubMed  CAS  Google Scholar 

  37. Nasr G, Sliem H. Silent myocardial ischemia in prediabetics in relation to insulin resistance. J Cardiovasc Dis Res. 2010;1:116–21.

    Article  PubMed  Google Scholar 

  38. Nasr G, Sliem H. Silent ischemia in relation to insulin resistance in normotensive prediabetic adults: early detection by single photon emission computed tomography (SPECT). Int J Cardiovasc Imaging. 2011;27:335–41.

    Article  PubMed  Google Scholar 

  39. Nishimura M, Tsukamoto K, Tamaki N, Kikuchi K, Iwamoto N, Ono T. Risk stratification for cardiac death in hemodialysis patients without obstructive coronary artery disease. Kidney Int. 2011;79:363–71.

    Article  PubMed  Google Scholar 

  40. Kawamori R. Insulin resistance seen in non-insulin dependent diabetes mellitus and hypertension. Hypertens Res. 1996;19 Suppl 1:S61–4.

    Article  PubMed  Google Scholar 

  41. Kaptoge S, Di Angelantonio E, Pennells L, Wood AM, White IR, Gao P, et al. C-reactive protein, fibrinogen, and cardiovascular disease prediction. N Engl J Med. 2012;367:1310–20.

    Article  PubMed  Google Scholar 

  42. Pfutzner A, Schondorf T, Hanefeld M, Forst T. High-sensitivity C-reactive protein predicts cardiovascular risk in diabetic and nondiabetic patients: effects of insulin-sensitizing treatment with pioglitazone. J Diabetes Sci Technol. 2010;4:706–16.

    PubMed  Google Scholar 

  43. Hsieh MC, Tien KJ, Chang SJ, Perng DS, Hsiao JY, Chen YW, et al. High-sensitivity C-reactive protein and silent myocardial ischemia in Chinese with type 2 diabetes mellitus. Metabolism. 2008;57:1533–8.

    Article  PubMed  CAS  Google Scholar 

  44. Lombardi F, Tundo F, Terranova P, Battezzati PM, Ramella M, Bestetti A, et al. Prognostic value of C-reactive protein in patients with stress induced myocardial ischemia. Int J Cardiol. 2005;98:313–7.

    Article  PubMed  Google Scholar 

  45. Scholte AJ, Schuijf JD, Kharagjitsingh AV, Dibbets-Schneider P, Stokkel MP, Jukema JW, et al. Different manifestations of coronary artery disease by stress SPECT myocardial perfusion imaging, coronary calcium scoring, and multislice CT coronary angiography in asymptomatic patients with type 2 diabetes mellitus. J Nucl Cardiol. 2008;15:503–9.

    Article  PubMed  Google Scholar 

  46. Deckert T, Feldt-Rasmussen B, Borch-Johnsen K, Jensen T, Kofoed-Enevoldsen A. Albuminuria reflects widespread vascular damage. The Steno hypothesis. Diabetologia. 1989;32:219–26.

    Article  PubMed  CAS  Google Scholar 

  47. Stehouwer CD, Smulders YM. Microalbuminuria and risk for cardiovascular disease: analysis of potential mechanisms. J Am Soc Nephrol. 2006;17:2106–11.

    Article  PubMed  CAS  Google Scholar 

  48. Weiner DA, Ryan TJ, Parsons L, Fisher LD, Chaitman BR, Sheffield LT, et al. Significance of silent myocardial ischemia during exercise testing in patients with diabetes mellitus: a report from the Coronary Artery Surgery Study (CASS) Registry. Am J Cardiol. 1991;68:729–34.

    Article  PubMed  CAS  Google Scholar 

  49. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, et al. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97:535–43.

    Article  PubMed  CAS  Google Scholar 

  50. Jackson CE, Solomon SD, Gerstein HC, Zetterstrand S, Olofsson B, Michelson EL, et al. Albuminuria in chronic heart failure: prevalence and prognostic importance. Lancet. 2009;374:543–50.

    Article  PubMed  CAS  Google Scholar 

  51. Gerstein HC, Mann JF, Pogue J, Dinneen SF, Halle JP, Hoogwerf B, et al. Prevalence and determinants of microalbuminuria in high-risk diabetic and nondiabetic patients in the Heart Outcomes Prevention Evaluation Study. The HOPE Study Investigators. Diabetes Care. 2000;23 Suppl 2:B35–9.

    PubMed  Google Scholar 

  52. Borch-Johnsen K, Feldt-Rasmussen B, Strandgaard S, Schroll M, Jensen JS. Urinary albumin excretion. An independent predictor of ischemic heart disease. Arterioscler Thromb Vasc Biol. 1999;19:1992–7.

    Article  PubMed  CAS  Google Scholar 

  53. Beijers HJ, Ferreira I, Bravenboer B, Dekker JM, Nijpels G, Heine RJ, et al. Microalbuminuria and cardiovascular autonomic dysfunction are independently associated with cardiovascular mortality: evidence for distinct pathways: the Hoorn Study. Diabetes Care. 2009;32:1698–703.

    Article  PubMed  Google Scholar 

  54. Rutter MK, Wahid ST, McComb JM, Marshall SM. Significance of silent ischemia and microalbuminuria in predicting coronary events in asymptomatic patients with type 2 diabetes. J Am Coll Cardiol. 2002;40:56–61.

    Article  PubMed  CAS  Google Scholar 

  55. Schmitz A. Microalbuminuria, blood pressure, metabolic control, and renal involvement: longitudinal studies in white non-insulin-dependent diabetic patients. Am J Hypertens. 1997;10:189S–97S.

    Article  PubMed  CAS  Google Scholar 

  56. Rein P, Vonbank A, Saely CH, Beer S, Jankovic V, Boehnel C, et al. Relation of albuminuria to angiographically determined coronary arterial narrowing in patients with and without type 2 diabetes mellitus and stable or suspected coronary artery disease. Am J Cardiol. 2011;107:1144–8.

    Article  PubMed  Google Scholar 

  57. Deveci OS, Kabakci G, Tulumen E, Okutucu S, Aksoy H, Kaya EB, et al. The relationship between microalbuminuria and the presence and extent of coronary atherosclerosis. Angiology. 2010;61:184–91.

    Article  PubMed  CAS  Google Scholar 

  58. Elhendy A, Tsutsui JM, O'Leary EL, Xie F, McGrain AC, Porter TR. Noninvasive diagnosis of coronary artery disease in patients with diabetes by dobutamine stress real-time myocardial contrast perfusion imaging. Diabetes Care. 2005;28:1662–7.

    Article  PubMed  Google Scholar 

  59. Janand-Delenne B, Savin B, Habib G, Bory M, Vague P, Lassmann-Vague V. Silent myocardial ischemia in patients with diabetes: who to screen. Diabetes Care. 1999;22:1396–400.

    Article  PubMed  CAS  Google Scholar 

  60. Gimelli A, Rossi G, Landi P, Marzullo P, Iervasi G, L'Abbate A, et al. Stress/rest myocardial perfusion abnormalities by gated SPECT: still the best predictor of cardiac events in stable ischemic heart disease. J Nucl Med. 2009;50:546–53.

    Article  PubMed  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Ciarmiello.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Giovacchini, G., Cappagli, M., Carro, S. et al. Microalbuminuria predicts silent myocardial ischaemia in type 2 diabetes patients. Eur J Nucl Med Mol Imaging 40, 548–557 (2013). https://doi.org/10.1007/s00259-012-2323-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-012-2323-5

Keywords

Navigation