Skip to main content

Advertisement

Log in

Early evaluation of cerebral metabolic rate of glucose (CMRglu) with 18F-FDG PET/CT and clinical assessment in idiopathic normal pressure hydrocephalus (INPH) patients before and after ventricular shunt placement: preliminary experience

  • Short Communication
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We evaluated the relationships between the cerebral metabolic rate of glucose (CMRglu) measured by dynamic 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) and the clinical and neuropsychological assessment before and after the surgical procedure in idiopathic normal pressure hydrocephalus (INPH) patients.

Methods

Eleven selected INPH patients underwent clinical assessment (modified Rankin scale, Krauss scale, Larsson categorization system and Stein-Langfitt scale), cognitive evaluation (Mini-Mental State Examination, MMSE) and dynamic 18F-FDG PET/CT scan 3 days before and 1 week after ventricular shunt placement.

Results

After shunting, the global CMRglu significantly increased (2.95 ± 0.44 vs 4.38 ± 0.68, p = 10−7) in all INPH patients with a mean percentage value of 48.7%. After shunting, no significant change was found in the Evans ratio whereas a significant decrease in all clinical scale scores was observed. Only a slight reduction in the MMSE was found. After shunting, a significant correlation between the global CMRglu value and clinical assessment was found (R 2 = 0.75, p = 0.024); indeed all clinical scale scores varied (decreasing) and the CMRglu value also varied (increasing) in all INPH patients.

Conclusion

Our preliminary data show that changes in the CMRglu are promptly reversible after surgery and that there is a relationship between the early metabolic changes and clinical symptoms, independently from the simultaneous changes in the ventricular size. The remarkable and prompt improvement in the global CMRglu and in symptoms may also have important implications for the current concept of “neuronal plasticity” and for the cells’ reactivity in order to recover their metabolic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. McGirt MJ, Woodworth G, Coon AL, Thomas G, Williams MA, Rigamonti D. Diagnosis, treatment, and analysis of long-term outcomes in idiopathic normal-pressure hydrocephalus. Neurosurgery 2005;57:699–705.

    Article  PubMed  Google Scholar 

  2. Tisell M, Hellström P, Ahl-Börjesson G, Barrows G, Blomsterwall E, Tullberg M, et al. Long-term outcome in 109 adult patients operated on for hydrocephalus. Br J Neurosurg 2006;20:214–21.

    Article  PubMed  CAS  Google Scholar 

  3. Conn HO. Normal pressure hydrocephalus: new complications and concepts. Pract Neurol 2007;7:252–8.

    Article  PubMed  Google Scholar 

  4. Owler BK, Pickard JD. Normal pressure hydrocephalus and cerebral blood flow: a review. Acta Neurol Scand 2001;104:325–42.

    Article  PubMed  CAS  Google Scholar 

  5. George AE, de Leon MJ, Miller J, Klinger A, Foo SH, Christman DL, et al. Positron emission tomography of hydrocephalus. Metabolic effects of shunt procedures. Acta Radiol Suppl 1986;369:435–9.

    PubMed  CAS  Google Scholar 

  6. Kaye JA, Grady CL, Haxby JV, Moore A, Friedland RP. Plasticity in the aging brain. Reversibility of anatomic, metabolic, and cognitive deficits in normal-pressure hydrocephalus following shunt surgery. Arch Neurol 1990;47:1336–41.

    Article  PubMed  CAS  Google Scholar 

  7. Evans WA. An encephalographic ratio for estimating ventricular enlargement and cerebral atrophy. Arch Neurol Psychiatry 1942;47:931–7.

    Google Scholar 

  8. Anile C, De Bonis P, Albanese A, Di Chirico A, Mangiola A, Petrella G, et al. Selection of patients with idiopathic normal-pressure hydrocephalus for shunt placement: a single-institution experience. J Neurosurg 2010;113:64–73.

    Article  PubMed  Google Scholar 

  9. Krauss JK, Droste DW, Vach W, Regel JP, Orszagh M, Borremans JJ, et al. Cerebrospinal fluid shunting in idiopathic normal-pressure hydrocephalus of the elderly: effect of periventricular and deep white matter lesions. Neurosurgery 1996;39:292–300.

    Article  PubMed  CAS  Google Scholar 

  10. Larsson A, Wikkelsö C, Bilting M, Stephensen H. Clinical parameters in 74 consecutive patients shunt operated for normal pressure hydrocephalus. Acta Neurol Scand 1991;84:475–82.

    Article  PubMed  CAS  Google Scholar 

  11. Stein SC, Langfitt TW. Normal-pressure hydrocephalus. Predicting the results of cerebrospinal fluid shunting. J Neurosurg 1974;41:463–70.

    Article  PubMed  CAS  Google Scholar 

  12. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res 1975;12:189–98.

    Article  PubMed  CAS  Google Scholar 

  13. Grigoletto F, Zappalà G, Anderson DW, Lebowitz BD. Norms for the Mini-Mental State Examination in a healthy population. Neurology 1999;53(2):315–20.

    PubMed  CAS  Google Scholar 

  14. Burger C, Buck A. Requirements and implementation of a flexible kinetic modeling tool. J Nucl Med 1997;38:1818–23.

    PubMed  CAS  Google Scholar 

  15. Reivich M, Alavi A, Wolf A, Fowler J, Russell J, Arnett C, et al. Glucose metabolic rate kinetic model parameter determination in humans: the lumped constants and rate constants for [18F]fluorodeoxyglucose and [11C]deoxyglucose. J Cereb Blood Flow Metab 1985;5:179–92.

    Article  PubMed  CAS  Google Scholar 

  16. Chen K, Bandy D, Reiman E, Huang SC, Lawson M, Feng D, et al. Noninvasive quantification of the cerebral metabolic rate for glucose using positron emission tomography, 18F-fluoro-2-deoxyglucose, the Patlak method, and an image-derived input function. J Cereb Blood Flow Metab 1998;18:716–23.

    Article  PubMed  CAS  Google Scholar 

  17. Fukuhara T, Vorster SJ, Luciano MG. Risk factors for failure of endoscopic third ventriculostomy for obstructive hydrocephalus. Neurosurgery 2000;46:1100–11.

    Article  PubMed  CAS  Google Scholar 

  18. Johonson CE. Choroid plexus-cerebrospinal fluid circulatory dynamics: impact on brain growth, metabolism and repair. In: Conn PM, editor. Neuroscience in medicine. Totowa: Humana; 2009. p. 173–200.

    Google Scholar 

  19. Silverberg GD. Normal pressure hydrocephalus (NPH): ischaemia, CSF stagnation or both. Brain 2004;127:947–8.

    Article  PubMed  Google Scholar 

  20. Vick NA, Rottenberg DA. Disorders of intracranial pressure – hydrocephalus. In: Wyngaarden JB, Smith LH, Bennett JC, editors. Cecil textbook of medicine. 19th ed. Philadelphia: Saunders; 1992. p. 2223–4.

    Google Scholar 

  21. Shih WJ, Tasdemiroglu E. Reversible hypoperfusion of the cerebral cortex in normal-pressure hydrocephalus on technetium-99m-HMPAO brain SPECT images after shunt operation. J Nucl Med 1995;36:470–3.

    PubMed  CAS  Google Scholar 

  22. Friedland RP. ‘Normal’-pressure hydrocephalus and the saga of the treatable dementias. JAMA 1989;262:2577–81.

    Article  PubMed  CAS  Google Scholar 

  23. Klinge PM, Berding G, Brinker T, Knapp WH, Samii M. A positron emission tomography study of cerebrovascular reserve before and after shunt surgery in patients with idiopathic chronic hydrocephalus. J Neurosurg 1999;91:605–9.

    Article  PubMed  CAS  Google Scholar 

  24. Wong CO, Luciano MG, MacIntyre WJ, Brunken RC, Hahn JF, Go RT. Viable neurons with luxury perfusion in hydrocephalus. J Nucl Med 1997;38:1467–70.

    PubMed  CAS  Google Scholar 

Download references

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Lucia Calcagni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calcagni, M.L., Lavalle, M., Mangiola, A. et al. Early evaluation of cerebral metabolic rate of glucose (CMRglu) with 18F-FDG PET/CT and clinical assessment in idiopathic normal pressure hydrocephalus (INPH) patients before and after ventricular shunt placement: preliminary experience. Eur J Nucl Med Mol Imaging 39, 236–241 (2012). https://doi.org/10.1007/s00259-011-1950-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-011-1950-6

Keywords

Navigation