Skip to main content

Advertisement

Log in

In vitro experimental 211At-anti-CD33 antibody therapy of leukaemia cells overcomes cellular resistance seen in vivo against gemtuzumab ozogamicin

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Monoclonal anti-CD33 antibodies conjugated with toxic calicheamicin derivative (gemtuzumab ozogamicin, GO) are a novel therapy option for acute myeloid leukaemia (AML). Key prognostic factors for patients with AML are high CD33 expression on the leukaemic cells and the ability to overcome mechanisms of resistance to cytotoxic chemotherapies, including drug efflux or other mechanisms decreasing apoptosis. Alpha particle-emitting radionuclides overwhelm such anti-apoptotic mechanisms by producing numerous DNA double-stranded breaks (DSBs) accompanied by decreased DNA repair.

Methods

We labelled anti-CD33 antibodies with the alpha-emitter 211At and compared survival of leukaemic HL-60 and K-562 cells treated with the 211At-labelled antibodies, GO or unlabelled antibodies as controls. We also measured caspase-3/7 activity, DNA fragmentation and necrosis in HL-60 cells after treatment with the different antibodies or with free 211At.

Results

The mean labelling ratio of 211At-labelled antibodies was 1:1,090 ± 364 (range: 1:738–1:1,722) in comparison to 2–3:1 for GO. Tumour cell binding of 211At-anti-CD33 was high in the presence of abundant CD33 expression and could be specifically blocked by unlabelled anti-CD33. 211At-anti-CD33 decreased survival significantly more than did GO at comparable dilution (1:1,000). No significant differences in induction of apoptosis or necrosis or DNA DSB or in decreased survival were observed after 211At-anti-CD33 (1:1,090) versus GO (1:1) treatment.

Conclusion

Our results suggest that 211At is a promising, highly cytotoxic radioimmunotherapy in CD33-positive leukaemia and kills tumour cells more efficiently than does calicheamicin-conjugated antibody. Labelling techniques leading to higher chemical yield and specific activities must be developed to increase 211At-anti-CD33 therapeutic effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Linenberger ML. CD33-directed therapy with gemtuzumab ozogamicin in acute myeloid leukemia: progress in understanding cytotoxicity and potential mechanisms of drug resistance. Leukemia 2005;19:176–82.

    Article  CAS  PubMed  Google Scholar 

  2. Freeman SD, Kelm S, Barber EK, Crocker PR. Characterization of CD33 as a new member of the sialoadhesin family of cellular interaction molecules. Blood 1995;85:2005–12.

    CAS  PubMed  Google Scholar 

  3. Tsimberidou AM, Giles FJ, Estey E, O’Brien S, Keating MJ, Kantarjian HM. The role of gemtuzumab ozogamicin in acute leukaemia therapy. Br J Haematol 2006;132:398–409.

    CAS  PubMed  Google Scholar 

  4. Lo-Coco F, Cimino G, Breccia M, Noguera NI, Diverio D, Finolezzi E, et al. Gemtuzumab ozogamicin (Mylotarg) as a single agent for molecularly relapsed acute promyelocytic leukemia. Blood 2004;104:1995–9.

    Article  CAS  PubMed  Google Scholar 

  5. Estey EH, Giles FJ, Beran M, O’Brien S, Pierce SA, Faderl SH, et al. Experience with gemtuzumab ozogamycin (“mylotarg”) and all-trans retinoic acid in untreated acute promyelocytic leukemia. Blood 2002;99:4222–4.

    Article  CAS  PubMed  Google Scholar 

  6. Hamann PR, Hinman LM, Beyer CF, Lindh D, Upeslacis J, Flowers DA, et al. An anti-CD33 antibody-calicheamicin conjugate for treatment of acute myeloid leukemia. Choice of linker. Bioconjug Chem 2002;13:40–6.

    Article  CAS  PubMed  Google Scholar 

  7. Caron PC, Schwartz MA, Co MS, Queen C, Finn RD, Graham MC, et al. Murine and humanized constructs of monoclonal antibody M195 (anti-CD33) for the therapy of acute myelogenous leukemia. Cancer 1994;73:1049–56.

    Article  CAS  PubMed  Google Scholar 

  8. Countouriotis A, Moore TB, Sakamoto KM. Cell surface antigen and molecular targeting in the treatment of hematologic malignancies. Stem Cells 2002;20:215–29.

    Article  CAS  PubMed  Google Scholar 

  9. van Der Velden VH, te Marvelde JG, Hoogeveen PG, Bernstein ID, Houtsmuller AB, Berger MS, et al. Targeting of the CD33-calicheamicin immunoconjugate Mylotarg (CMA-676) in acute myeloid leukemia: in vivo and in vitro saturation and internalization by leukemic and normal myeloid cells. Blood 2001;97:3197–204.

    Article  Google Scholar 

  10. Zein N, Sinha AM, McGahren WJ, Ellestad GA. Calicheamicin gamma 1I: an antitumor antibiotic that cleaves double-stranded DNA site specifically. Science 1988;240:1198–201.

    Article  CAS  PubMed  Google Scholar 

  11. Walker S, Landovitz R, Ding WD, Ellestad GA, Kahne D. Cleavage behavior of calicheamicin gamma 1 and calicheamicin T. Proc Natl Acad Sci U S A 1992;89:4608–12.

    Article  CAS  PubMed  Google Scholar 

  12. Naito K, Takeshita A, Shigeno K, Nakamura S, Fujisawa S, Shinjo K, et al. Calicheamicin-conjugated humanized anti-CD33 monoclonal antibody (gemtuzumab zogamicin, CMA-676) shows cytocidal effect on CD33-positive leukemia cell lines, but is inactive on P-glycoprotein-expressing sublines. Leukemia 2000;14:1436–43.

    Article  CAS  PubMed  Google Scholar 

  13. Walter RB, Raden BW, Hong TC, Flowers DA, Bernstein ID, Linenberger ML. Multidrug resistance protein attenuates gemtuzumab ozogamicin-induced cytotoxicity in acute myeloid leukemia cells. Blood 2003;102:1466–73.

    Article  CAS  PubMed  Google Scholar 

  14. Walter RB, Gooley TA, van der Velden VH, Loken MR, van Dongen JJ, Flowers DA, et al. CD33 expression and P-glycoprotein-mediated drug efflux inversely correlate and predict clinical outcome in patients with acute myeloid leukemia treated with gemtuzumab ozogamicin monotherapy. Blood 2007;109:4168–70.

    Article  CAS  PubMed  Google Scholar 

  15. Jedema I, Barge RM, van der Velden VH, Nijmeijer BA, van Dongen JJ, Willemze R, et al. Internalization and cell cycle-dependent killing of leukemic cells by Gemtuzumab Ozogamicin: rationale for efficacy in CD33-negative malignancies with endocytic capacity. Leukemia 2004;18:316–25.

    Article  CAS  PubMed  Google Scholar 

  16. Walter RB, Raden BW, Cronk MR, Bernstein ID, Appelbaum FR, Banker DE. The peripheral benzodiazepine receptor ligand PK11195 overcomes different resistance mechanisms to sensitize AML cells to gemtuzumab ozogamicin. Blood 2004;103:4276–84.

    Article  CAS  PubMed  Google Scholar 

  17. Amico D, Barbui AM, Erba E, Rambaldi A, Introna M, Golay J. Differential response of human acute myeloid leukemia cells to gemtuzumab ozogamicin in vitro: role of Chk1 and Chk2 phosphorylation and caspase 3. Blood 2003;101:4589–97.

    Article  CAS  PubMed  Google Scholar 

  18. Scheinberg DA. Current applications of monoclonal antibodies for the therapy of hematopoietic cancers. Curr Opin Immunol 1991;3:679–84.

    Article  CAS  PubMed  Google Scholar 

  19. Scheinberg DA, Lovett D, Divgi CR, Graham MC, Berman E, Pentlow K, et al. A phase I trial of monoclonal antibody M195 in acute myelogenous leukemia: specific bone marrow targeting and internalization of radionuclide. J Clin Oncol 1991;9:478–90.

    CAS  PubMed  Google Scholar 

  20. Friesen C, Glatting G, Koop B, Schwarz K, Morgenstern A, Apostolidis C, et al. Breaking chemoresistance and radioresistance with [213Bi]anti-CD45 antibodies in leukemia cells. Cancer Res 2007;67:1950–8.

    Article  CAS  PubMed  Google Scholar 

  21. Petrich T, Helmeke HJ, Meyer GJ, Knapp WH, Pötter E. Establishment of radioactive astatine and iodine uptake in cancer cell lines expressing the human sodium/iodide symporter. Eur J Nucl Med Mol Imaging 2002;29:842–54.

    Article  CAS  PubMed  Google Scholar 

  22. Zalutsky MR, Narula AS. Astatination of proteins using an N-succinimidyl tri-n-butylstannyl benzoate intermediate. Int J Rad Appl Instrum A 1988;39:227–32.

    Article  CAS  PubMed  Google Scholar 

  23. Talanov VS, Yordanov AT, Garmestani K, Milenic DE, Arora HC, Plascjak PS, et al. Preparation and in vivo evaluation of novel linkers for 211At labeling of proteins. Nucl Med Biol 2004;31:1061–71.

    Article  CAS  PubMed  Google Scholar 

  24. Walte A, Sriyapureddy SS, Korkmaz Z, Krull D, Bolte O, Hofmann M, et al. Preparation and evaluation of 211At labelled antineoplastic antibodies. J Pharm Pharm Sci 2007;10:277s–85.

    CAS  PubMed  Google Scholar 

  25. Núñez MI, Guerrero MR, López E, del Moral MR, Valenzuela MT, Siles E, et al. DNA damage and prediction of radiation response in lymphocytes and epidermal skin human cells. Int J Cancer 1998;76:354–61.

    Article  PubMed  Google Scholar 

  26. Iliakis G, Wang H, Perrault AR, Boecker W, Rosidi B, Windhofer F, et al. Mechanisms of DNA double strand break repair and chromosome aberration formation. Cytogenet Genome Res 2004;104:14–20.

    Article  CAS  PubMed  Google Scholar 

  27. Pinar B, Lara PC, Lloret M, Bordón E, Núñez MI, Villalobos M, et al. Radiation-induced DNA damage as a predictor of long-term toxicity in locally advanced breast cancer patients treated with high-dose hyperfractionated radical radiotherapy. Radiat Res 2007;168:415–22.

    Article  CAS  PubMed  Google Scholar 

  28. Vaux DL, Strasser A. The molecular biology of apoptosis. Proc Natl Acad Sci U S A 1996;93:2239–44.

    Article  CAS  PubMed  Google Scholar 

  29. Nicholson DW, Thornberry NA. Caspases: killer proteases. Trends Biochem Sci 1997;22:299–306.

    Article  CAS  PubMed  Google Scholar 

  30. Tallman MS, Gilliland DG, Rowe JM. Drug therapy for acute myeloid leukemia. Blood 2005;106:1154–63.

    Article  CAS  PubMed  Google Scholar 

  31. Larson RA, Stone RM, Mayer RJ, Schiffer CA. Fifty years of clinical research by the leukemia committee of the cancer and leukemia group B. Clin Cancer Res 2006;12:3556s–63.

    Article  CAS  PubMed  Google Scholar 

  32. Rajvanshi P, Shulman HM, Sievers EL, McDonald GB. Hepatic sinusoidal obstruction after gemtuzumab ozogamicin (Mylotarg) therapy. Blood 2002;99:2310–4.

    Article  CAS  PubMed  Google Scholar 

  33. McKoy JM, Angelotta C, Bennett CL, Tallman MS, Wadleigh M, Evens AM, et al. Gemtuzumab ozogamicin-associated sinusoidal obstructive syndrome (SOS): an overview from the research on adverse drug events and reports (RADAR) project. Leuk Res 2007;31:599–604.

    Article  CAS  PubMed  Google Scholar 

  34. Giles FJ, Kantarjian HM, Kornblau SM, Thomas DA, Garcia-Manero G, Waddelow TA, et al. Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 2001;92:406–13.

    Article  CAS  PubMed  Google Scholar 

  35. Zalutsky MR, Reardon DA, Akabani G, Coleman RE, Friedman AH, Friedman HS, et al. Clinical experience with alpha-particle emitting 211At: treatment of recurrent brain tumor patients with 211At-labeled chimeric antitenascin monoclonal antibody 81C6. J Nucl Med 2008;49:30–8.

    Article  CAS  PubMed  Google Scholar 

  36. Zalutsky MR, Reardon DA, Pozzi OR, Vaidyanathan G, Bigner DD. Targeted alpha-particle radiotherapy with 211At-labeled monoclonal antibodies. Nucl Med Biol 2007;34:779–85.

    Article  CAS  PubMed  Google Scholar 

  37. Andersson H, Cederkrantz E, Bäck T, Divgi C, Elgqvist J, Himmelman J, et al. Intraperitoneal alpha-particle radioimmunotherapy of ovarian cancer patients: pharmacokinetics and dosimetry of 211At-MX35 F(ab’)2—a phase I study. J Nucl Med 2009;50:1153–60.

    Article  CAS  PubMed  Google Scholar 

  38. Tisnek N, Kalanxhi E, Serkland CW, Iversen J, Belyakov OV, Dahle J. A (238)Pu irradiator for exposure of cultured cells with alpha-radiation: construction, calibration and dosimetry. Appl Radiat Isot 2009;67:1998–2002.

    Article  CAS  PubMed  Google Scholar 

  39. Chouin N, Bernardeau K, Bardiès M, Faivre-Chauvet A, Bourgeois M, Apostolidis C, et al. Evidence of extranuclear cell sensitivity to alpha-particle radiation using a microdosimetric model. II. Application of the microdosimetric model to experimental results. Radiat Res 2009;171:664–73.

    Article  CAS  PubMed  Google Scholar 

  40. McDevitt MR, Sgouros G, Finn RD, Humm JL, Jurcic JG, Larson SM, et al. Radioimmunotherapy with alpha-emitting nuclides. Eur J Nucl Med 1998;25:1341–51.

    Article  CAS  PubMed  Google Scholar 

  41. Raju MR, Eisen Y, Carpenter S, Inkret WC. Radiobiology of alpha particles. III. Cell inactivation by alpha-particle traversals of the cell nucleus. Radiat Res 1991;128:204–9.

    Article  CAS  PubMed  Google Scholar 

  42. Nakamae H, Wilbur DS, Hamlin DK, Thakar MS, Santos EB, Fisher DR, et al. Biodistributions, myelosuppression, and toxicities in mice treated with an anti-CD45 antibody labeled with the alpha-emitting radionuclides bismuth-213 or astatine-211. Cancer Res 2009;69:2408–15.

    Article  CAS  PubMed  Google Scholar 

  43. Lindegren S, Frost S, Bäck T, Haglund E, Elgqvist J, Jensen H. Direct procedure for the production of 211At-labeled antibodies with an epsilon-lysyl-3-(trimethylstannyl)benzamide immunoconjugate. J Nucl Med 2008;49:1537–45.

    Article  CAS  PubMed  Google Scholar 

  44. Robinson MK, Shaller C, Garmestani K, Plascjak PS, Hodge KM, Yuan QA, et al. Effective treatment of established human breast tumor xenografts in immunodeficient mice with a single dose of the alpha-emitting radioisotope astatine-211 conjugated to anti-HER2/neu diabodies. Clin Cancer Res 2008;14:875–82.

    Article  CAS  PubMed  Google Scholar 

  45. Elgqvist J, Andersson H, Bernhardt P, Bäck T, Claesson I, Hultborn R, et al. Administered activity and metastatic cure probability during radioimmunotherapy of ovarian cancer in nude mice with 211At-MX35 F(ab’)2. Int J Radiat Oncol Biol Phys 2006;66:1228–37.

    CAS  PubMed  Google Scholar 

  46. Wilbur DS, Hamlin DK, Chyan MK, Brechbiel MW. Streptavidin in antibody pretargeting. 5. chemical modification of recombinant streptavidin for labeling with the alpha-particle-emitting radionuclides 213Bi and 211At. Bioconjug Chem 2008;19:158–70.

    Article  CAS  PubMed  Google Scholar 

  47. Palm S, Bäck T, Claesson I, Danielsson A, Elgqvist J, Frost S, et al. Therapeutic efficacy of astatine-211-labeled trastuzumab on radioresistant SKOV-3 tumors in nude mice. Int J Radiat Oncol Biol Phys 2007;69:572–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by Deutsche José Carreras Leukämie Stiftung (no. DJCLS 04/21). We thank R.J. Marlowe (Jersey City, NJ, USA) for critically reading the manuscript.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten Petrich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Petrich, T., Korkmaz, Z., Krull, D. et al. In vitro experimental 211At-anti-CD33 antibody therapy of leukaemia cells overcomes cellular resistance seen in vivo against gemtuzumab ozogamicin. Eur J Nucl Med Mol Imaging 37, 851–861 (2010). https://doi.org/10.1007/s00259-009-1356-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1356-x

Keywords

Navigation