Skip to main content

Advertisement

Log in

Optimization and assessment of quantitative 124I imaging on a Philips Gemini dual GS PET/CT system

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Quantitative 124I PET imaging is challenging as 124I has a complex decay scheme. In this study the performance of a Philips Gemini dual GS PET/CT system was optimized and assessed for 124I.

Methods

The energy window giving the maximum noise equivalent count rate (NECR) and NEMA 2001-NU2 image quality were measured. The activity concentration (AC) accuracy of images calibrated using factors from 18F and 124I decaying source measurements were investigated.

Results

The energy window 455–588 keV gave the maximum NECR of 9.67 kcps for 233 MBq. 124I and 18F image quality was comparable, although 124I background variability was increased. The average underestimation in AC in 124I images was 17.9 ± 2.9% for nonuniform background and 14.7 ± 2.9% for single scatter simulation (SSS) subtraction scatter correction. At 224 MBq the underestimation was 10.8 ± 11.3%, which is comparable to 7.7 ± 5.3% for 18F, but increased with decreasing activity.

Conclusions

The best 124I PET quantitative accuracy was achieved for the optimized energy window, using SSS scatter correction and calibration factors from decaying 124I source measurements. The quantitative accuracy for 124I was comparable to that for 18F at high activities of 224 MBq but diminishing with decreasing activity. Specific corrections for prompt γ-photons may further improve the quantitative accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Flower MA, Schlesinger T, Hinton PJ, Adam I, Masoomi AM, Elbelli MA, et al. Radiation dose assessment in radioiodine therapy. 2. Practical implementation using quantitative scanning and PET, with initial results on thyroid carcinoma. Radiother Oncol 1989;15:345–57.

    Article  PubMed  CAS  Google Scholar 

  2. Ott RJ, Batty V, Webb BS, Flower MA, Leach MO, Clack R, et al. Measurement of radiation dose to the thyroid using positron emission tomography. Br J Radiol 1987;60:245–51.

    PubMed  CAS  Google Scholar 

  3. Larson SM, Pentlow KS, Volkow ND, Wolf AP, Finn RD, Lambrecht RM, et al. PET scanning of iodine-124-3F9 as an approach to tumor dosimetry during treatment planning for radioimmunotherapy in a child with neuroblastoma. J Nucl Med 1992;33:2020–23.

    PubMed  CAS  Google Scholar 

  4. Pentlow KS, Graham MC, Lambrecht RM, Cheung NK, Larson SM. Quantitative imaging of I-124 using positron emission tomography with applications to radioimmunodiagnosis and radioimmunotherapy. Med Phys 1991;18:357–66.

    Article  PubMed  CAS  Google Scholar 

  5. Westera G, Reist HW, Buchegger F, Heusser CH, Hardman N, Pfeiffer A, et al. Radioimmuno positron emission tomography with monoclonal antibodies: a new approach to quantifying in vivo tumour concentration and biodistribution for radioimmunotherapy. Nucl Med Commun 1991;12:429–37.

    Article  PubMed  CAS  Google Scholar 

  6. Erdi YE, Macapinlac H, Larson SM, Erdi AK, Yeung H, Furhang EE, et al. Radiation dose assessment for I-131 therapy of thyroid cancer using I-124 PET imaging. Clin Positron Imaging 1999;2:41–6.

    Article  PubMed  Google Scholar 

  7. Eschmann SM, Reischl G, Bilger K, Kupferschlager J, Thelen MH, Dohmen BM, et al. Evaluation of dosimetry of radioiodine therapy in benign and malignant thyroid disorders by means of iodine-124 and PET. Eur J Nucl Med Mol Imaging 2002;29:760–7.

    Article  PubMed  CAS  Google Scholar 

  8. Sgouros G, Kolbert KS, Sheikh A, Pentlow KS, Mun EF, Barth A, et al. Patient-specific dosimetry for 131I thyroid cancer therapy using 124I PET and 3-dimensional-internal dosimetry (3D-ID) software. J Nucl Med 2004;45:1366–72.

    PubMed  CAS  Google Scholar 

  9. Freudenberg LS, Jentzen W, Gorges R, Petrich T, Marlowe RJ, Knust J, et al. 124I-PET dosimetry in advanced differentiated thyroid cancer: therapeutic impact. Nuklearmedizin 2007;46:121–8.

    PubMed  CAS  Google Scholar 

  10. Ott RJ, Tait D, Flower MA, Babich JW, Lambrecht RM. Treatment planning for 131I-mIBG radiotherapy of neural crest tumours using 124I-mIBG positron emission tomography. Br J Radiol 1992;65:787–91.

    Article  PubMed  CAS  Google Scholar 

  11. Daghighian F, Pentlow KS, Larson SM, Graham MC, DiResta GR, Yeh SD, et al. Development of a method to measure kinetics of radiolabelled monoclonal antibody in human tumour with applications to microdosimetry: positron emission tomography studies of iodine-124 labelled 3F8 monoclonal antibody in glioma. Eur J Nucl Med 1993;20:402–9.

    Article  PubMed  CAS  Google Scholar 

  12. Bockisch A, Freudenberg L, Rosenbaum S, Jentzen W. (124)I in PET imaging: impact on quantification, radiopharmaceutical development and distribution. Eur J Nucl Med Mol Imaging 2006;33:1247–8.

    Article  PubMed  Google Scholar 

  13. Blasberg RG, Roelcke U, Weinreich R, Beattie B, von Ammon K, Yonekawa Y, et al. Imaging brain tumor proliferative activity with [124I]iododeoxyuridine. Cancer Res 2000;60:624–35.

    PubMed  CAS  Google Scholar 

  14. Collingridge DR, Carroll VA, Glaser M, Aboagye EO, Osman S, Hutchinson OC, et al. The development of [(124)I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography. Cancer Res 2002;62:5912–9.

    PubMed  CAS  Google Scholar 

  15. Dekker B, Keen H, Lyons S, Disley L, Hastings D, Reader A, et al. MBP-annexin V radiolabeled directly with iodine-124 can be used to image apoptosis in vivo using PET. Nucl Med Biol 2005;32:241–52.

    Article  PubMed  CAS  Google Scholar 

  16. Iozzo P, Osman S, Glaser M, Knickmeier M, Ferrannini E, Pike VW, et al. In vivo imaging of insulin receptors by PET: preclinical evaluation of iodine-125 and iodine-124 labelled human insulin. Nucl Med Biol 2002;29:73–82.

    Article  PubMed  CAS  Google Scholar 

  17. Langen KJ, Coenen HH, Roosen N, Kling P, Muzik O, Herzog H, et al. SPECT studies of brain tumors with L-3-[123I] iodo-alpha-methyl tyrosine: comparison with PET, 124IMT and first clinical results. J Nucl Med 1990;31:281–6.

    PubMed  CAS  Google Scholar 

  18. Roelcke U, Hausmann O, Merlo A, Missimer J, Maguire RP, Freitag P, et al. PET imaging drug distribution after intratumoral injection: the case for (124)I-iododeoxyuridine in malignant gliomas. J Nucl Med 2002;43:1444–51.

    PubMed  CAS  Google Scholar 

  19. Shaul M, Abourbeh G, Jacobson O, Rozen Y, Laky D, Levitzki A, et al. Novel iodine-124 labeled EGFR inhibitors as potential PET agents for molecular imaging in cancer. Bioorg Med Chem 2004;12:3421–9.

    Article  PubMed  CAS  Google Scholar 

  20. Wilson CB, Snook DE, Dhokia B, Taylor CV, Watson IA, Lammertsma AA, et al. Quantitative measurement of monoclonal antibody distribution and blood flow using positron emission tomography and 124iodine in patients with breast cancer. Int J Cancer 1991;47:344–7.

    Article  PubMed  CAS  Google Scholar 

  21. Herzog H, Tellman L, Qaim SM, Spellerberg S, Schmid A, Coenen HH. PET quantitation and imaging of the non-pure positron-emitting iodine isotope 124I. Appl Radiat Isot 2002;56:673–9.

    Article  PubMed  CAS  Google Scholar 

  22. Jentzen W, Weise R, Kupferschlager J, Freudenberg L, Brandau W, Bares R, et al. Iodine-124 PET dosimetry in differentiated thyroid cancer: recovery coefficient in 2D and 3D modes for PET(/CT) systems. Eur J Nucl Med Mol Imaging 2008;35:611–23

    Article  PubMed  Google Scholar 

  23. Lubberink M, van Schie A, de Jong HW, van Dongen GA, Teule GJ. Acquisition settings for PET of 124I administered simultaneously with therapeutic amounts of 131I. J Nucl Med 2006;47:1375–81.

    PubMed  CAS  Google Scholar 

  24. Vandenberghe S. Three-dimensional positron emission tomography imaging with 124I and 86Y. Nucl Med Commun 2006;27:237–45.

    Article  PubMed  Google Scholar 

  25. Accorsi R, Adam LE, Werner ME, Karp JS. Optimization of a fully 3D single scatter simulation algorithm for 3D PET. Phys Med Biol 2004;49:2577–98.

    Article  PubMed  Google Scholar 

  26. Karp JS, Muehllehner G, MankofF DA, Ordonez CE, Ollinger JM, Daube-Witherspoon ME, et al. Continuous-slice PENN-PET: a positron tomograph with volume imaging capability. J Nucl Med 1990;31:617–27.

    PubMed  CAS  Google Scholar 

  27. Guzzardi R, Bellina CR, Knoop B, Jordan K, Ostertag H, Reist HW. Methodologies for performance evaluation of positron emission tomographs. J Nucl Biol Med 1991;35:141–57.

    PubMed  CAS  Google Scholar 

  28. Gregory RA, Partridge M, Flower MA. Performance evaluation of the Philips ‘Gemini’ PET/CT system. IEEE Trans Nucl Sci (TNS) 2006;53:93–101.

    Article  CAS  Google Scholar 

  29. National Electrical Manufacturers Association. Standards publication NU 2-2001: Performance measurements of positron emission tomographs. Rosslyn, VA: National Electrical Manufacturers Association; 2001. p. 1–40

  30. Kocher DC. Radioactive decay data tables. DOE/TIC-11026. Oak Ridge, TN: Technical Information Center, U.S. Department of Energy; 1981.

  31. Iimura H, Katakura J, Tamura T, Kitao K. Nuclear Data Sheets 1997;80:895

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the University of London Central Research Fund. The authors would like to thank Dr John Keightley and colleagues at NPL, UK, for their measurements to validate the calibrator readings.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rebecca A. Gregory.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gregory, R.A., Hooker, C.A., Partridge, M. et al. Optimization and assessment of quantitative 124I imaging on a Philips Gemini dual GS PET/CT system. Eur J Nucl Med Mol Imaging 36, 1037–1048 (2009). https://doi.org/10.1007/s00259-009-1099-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1099-8

Keywords

Navigation