Skip to main content
Log in

Characterization of preclinical models of prostate cancer using PET-based molecular imaging

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Transgenic adenocarcinoma of the mouse prostate (TRAMP) mice spontaneously develop hormone-dependent and hormone-independent prostate cancer (PC) that potentially resembles the human pathological condition. The aim of the study was to validate PET imaging as a reliable tool for in vivo assessment of disease biology and progression in TRAMP mice using radioligands routinely applied in clinical practice: [18F]FDG and [11C]choline.

Methods

Six TRAMP mice were longitudinally evaluated starting at week 11 of age to visualize PC development and progression. The time frame and imaging pattern of PC lesions were subsequently confirmed on an additional group of five mice.

Results

PET and [18F]FDG allowed detection of PC lesions starting from 23 weeks of age. [11C]Choline was clearly taken up only by TRAMP mice carrying neuroendocrine lesions, as revealed by post-mortem histological evaluation.

Conclusion

PET-based molecular imaging represents a state-of-the-art tool for the in vivo monitoring and metabolic characterization of PC development, progression and differentiation in the TRAMP model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Gittes RF. Carcinoma of the prostate. N Engl J Med 1991;324(4):236–45.

    Article  PubMed  CAS  Google Scholar 

  2. Margolis DJ, Hoffman JM, Herfkens RJ, Jeffrey RB, Quon A, Gambhir SS. Molecular imaging techniques in body imaging. Radiology 2007;245(2):333–56.

    Article  PubMed  Google Scholar 

  3. Lawrentschuk N, Davis ID, Bolton DM, Scott AM. Positron emission tomography and molecular imaging of the prostate: an update. BJU Int 2006;97(5):923–31.

    Article  PubMed  CAS  Google Scholar 

  4. Ramirez de Molina A, Sarmentero-Estrada J, Belda-Iniesta C, Taron M, Ramirez de Molina V, Cejas P, et al. Expression of choline kinase alpha to predict outcome in patients with early-stage non-small-cell lung cancer: a retrospective study. Lancet Oncol 2007;8(10):889–97.

    Article  PubMed  CAS  Google Scholar 

  5. de Jong IJ, Pruim J, Elsinga PH, Vaalburg W, Mensink HJ. 11C-choline positron emission tomography for the evaluation after treatment of localized prostate cancer. Eur Urol 2003;44(1):32–8. discussion 8–9.

    Article  PubMed  Google Scholar 

  6. Picchio M, Messa C, Landoni C, Gianolli L, Sironi S, Brioschi M, et al. Value of [11C]choline-positron emission tomography for re-staging prostate cancer: a comparison with [18F]fluorodeoxyglucose-positron emission tomography. J Urol 2003;169(4):1337–40.

    Article  PubMed  CAS  Google Scholar 

  7. Yoshida S, Nakagomi K, Goto S, Futatsubashi M, Torizuka T. 11C-choline positron emission tomography in prostate cancer: primary staging and recurrent site staging. Urol Int 2005;74(3):214–20.

    Article  PubMed  CAS  Google Scholar 

  8. Schmid DT, John H, Zweifel R, Cservenyak T, Westera G, Goerres GW, et al. Fluorocholine PET/CT in patients with prostate cancer: initial experience. Radiology 2005;235(2):623–8.

    Article  PubMed  Google Scholar 

  9. Heinisch M, Dirisamer A, Loidl W, Stoiber F, Gruy B, Haim S, et al. Positron emission tomography/computed tomography with F-18-fluorocholine for restaging of prostate cancer patients: meaningful at PSA <5 ng/ml? Mol Imaging Biol 2006;8(1):43–8.

    Article  PubMed  Google Scholar 

  10. Scattoni V, Picchio M, Suardi N, Messa C, Freschi M, Roscigno M, et al. Detection of lymph-node metastases with integrated [11C]choline PET/CT in patients with PSA failure after radical retropubic prostatectomy: results confirmed by open pelvic-retroperitoneal lymphadenectomy. Eur Urol 2007;52(2):423–9.

    Article  PubMed  Google Scholar 

  11. Husarik DB, Miralbell R, Dubs M, John H, Giger OT, Gelet A, et al. Evaluation of [(18)F]-choline PET/CT for staging and restaging of prostate cancer. Eur J Nucl Med Mol Imaging 2008;35(2):253–63.

    Article  PubMed  Google Scholar 

  12. Krause BJ, Souvatzoglou M, Tuncel M, Herrmann K, Buck AK, Praus C, et al. The detection rate of [(11)C]Choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 2008;35(1):18–23.

    Article  PubMed  CAS  Google Scholar 

  13. Schoder H, Larson SM. Positron emission tomography for prostate, bladder, and renal cancer. Semin Nucl Med 2004;34(4):274–92.

    Article  PubMed  Google Scholar 

  14. Hara T. 11C-choline and 2-deoxy-2-[18F]fluoro-D-glucose in tumor imaging with positron emission tomography. Mol Imaging Biol 2002;4(4):267–73.

    Article  PubMed  Google Scholar 

  15. Abate-Shen C, Shen MM. Mouse models of prostate carcinogenesis. Trends Genet 2002;18(5):S1–S5.

    Article  PubMed  CAS  Google Scholar 

  16. Chiang CF, Son EL, Wu GJ. Oral treatment of the TRAMP mice with doxazosin suppresses prostate tumor growth and metastasis. Prostate 2005;64(4):408–18.

    Article  PubMed  CAS  Google Scholar 

  17. Greenberg NM, DeMayo F, Finegold MJ, Medina D, Tilley WD, Aspinall JO, et al. Prostate cancer in a transgenic mouse. Proc Natl Acad Sci U S A 1995;92(8):3439–43.

    Article  PubMed  CAS  Google Scholar 

  18. Kaplan-Lefko PJ, Chen TM, Ittmann MM, Barrios RJ, Ayala GE, Huss WJ, et al. Pathobiology of autochthonous prostate cancer in a pre-clinical transgenic mouse model. Prostate 2003;55(3):219–37.

    Article  PubMed  Google Scholar 

  19. Han G, Foster BA, Mistry S, Buchanan G, Harris JM, Tilley WD, et al. Hormone status selects for spontaneous somatic androgen receptor variants that demonstrate specific ligand and cofactor dependent activities in autochthonous prostate cancer. J Biol Chem 2001;276(14):11204–13.

    Article  PubMed  CAS  Google Scholar 

  20. Huss WJ, Hanrahan CF, Barrios RJ, Simons JW, Greenberg NM. Angiogenesis and prostate cancer: identification of a molecular progression switch. Cancer Res 2001;61(6):2736–43.

    PubMed  CAS  Google Scholar 

  21. Narayanan BA, Narayanan NK, Pittman B, Reddy BS. Regression of mouse prostatic intraepithelial neoplasia by nonsteroidal anti-inflammatory drugs in the transgenic adenocarcinoma mouse prostate model. Clin Cancer Res 2004;10(22):7727–37.

    Article  PubMed  CAS  Google Scholar 

  22. Kaplan PJ, Mohan S, Cohen P, Foster BA, Greenberg NM. The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Cancer Res 1999;59(9):2203–9.

    PubMed  CAS  Google Scholar 

  23. Shappell SB, Thomas GV, Roberts RL, Herbert R, Ittmann MM, Rubin MA, et al. Prostate pathology of genetically engineered mice: definitions and classification. The consensus report from the Bar Harbor meeting of the Mouse Models of Human Cancer Consortium Prostate Pathology Committee. Cancer Res 2004;64(6):2270–305.

    Article  PubMed  CAS  Google Scholar 

  24. Foster BA, Gingrich JR, Kwon ED, Madias C, Greenberg NM. Characterization of prostatic epithelial cell lines derived from transgenic adenocarcinoma of the mouse prostate (TRAMP) model. Cancer Res 1997;57(16):3325–30.

    PubMed  CAS  Google Scholar 

  25. Huss WJ, Gray DR, Tavakoli K, Marmillion ME, Durham LE, Johnson MA, et al. Origin of androgen-insensitive poorly differentiated tumors in the transgenic adenocarcinoma of mouse prostate model. Neoplasia 2007;9(11):938–50.

    Article  PubMed  CAS  Google Scholar 

  26. Vashchenko N, Abrahamsson PA. Neuroendocrine differentiation in prostate cancer: implications for new treatment modalities. Eur Urol 2005;47(2):147–55.

    Article  PubMed  CAS  Google Scholar 

  27. Hansson J, Abrahamsson PA. Neuroendocrine differentiation in prostatic carcinoma. Scand J Urol Nephrol Suppl. 2003;(212):28–36.

  28. Ather MH, Abbas F. Prognostic significance of neuroendocrine differentiation in prostate cancer. Eur Urol 2000;38(5):535–42.

    Article  PubMed  CAS  Google Scholar 

  29. Degrassi A, Russo M, Scanziani E, Giusti A, Ceruti R, Texido G, et al. Magnetic resonance imaging and histopathological characterization of prostate tumors in TRAMP mice as model for pre-clinical trials. Prostate 2007;67(4):396–404.

    Article  PubMed  Google Scholar 

  30. Degl’Innocenti E, Grioni M, Boni A, Camporeale A, Bertilaccio MT, Freschi M, et al. Peripheral T cell tolerance occurs early during spontaneous prostate cancer development and can be rescued by dendritic cell immunization. Eur J Immunol 2005;35(1):66–75.

    Article  PubMed  CAS  Google Scholar 

  31. Hara T, Kosaka N, Kishi H. PET imaging of prostate cancer using carbon-11-choline. J Nucl Med 1998;39(6):990–5.

    PubMed  CAS  Google Scholar 

  32. Smith TA, Sharma RI, Thompson AM, Paulin FE. Tumor 18F-FDG incorporation is enhanced by attenuation of P53 function in breast cancer cells in vitro. J Nucl Med 2006;47(9):1525–30.

    PubMed  CAS  Google Scholar 

  33. Davoodpour P, Bergström M, Landström M. Effects of 2-methoxyestradiol on proliferation, apoptosis and PET-tracer uptake in human prostate cancer cell aggregates. Nucl Med Biol 2004;31(7):867–74.

    Article  PubMed  CAS  Google Scholar 

  34. Hara T, Bansal A, DeGrado TR. Effect of hypoxia on the uptake of [methyl-3H]choline, [1-14C] acetate and [18F]FDG in cultured prostate cancer cells. Nucl Med Biol 2006;33(8):977–84.

    Article  PubMed  CAS  Google Scholar 

  35. Del Guerra A, Belcari N. Advances in animal PET scanners. Q J Nucl Med 2002;46(1):35–47.

    PubMed  CAS  Google Scholar 

  36. Motta A, Damiani C, Del Guerra A, Di Domenico G, Zavattini G. Use of a fast EM algorithm for 3D image reconstruction with the YAP-PET tomograph. Comput Med Imaging Graph 2002;26(5):293–302.

    Article  PubMed  CAS  Google Scholar 

  37. Bertilaccio MT, Grioni M, Sutherland BW, Degl’Innocenti E, Freschi M, Jachetti E, et al. Vasculature-targeted tumor necrosis factor-alpha increases the therapeutic index of doxorubicin against prostate cancer. Prostate 2008;68(10):1105–15.

    Article  PubMed  CAS  Google Scholar 

  38. Oyama N, Akino H, Suzuki Y, Kanamaru H, Sadato N, Yonekura Y, et al. The increased accumulation of [18F]fluorodeoxyglucose in untreated prostate cancer. Jpn J Clin Oncol 1999;29(12):623–9.

    Article  PubMed  CAS  Google Scholar 

  39. Oyama N, Akino H, Suzuki Y, Kanamaru H, Miwa Y, Tsuka H, et al. Prognostic value of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for patients with prostate cancer. Mol Imaging Biol 2002;4(1):99–104.

    Article  PubMed  Google Scholar 

  40. Zhang Y, Saylor M, Wen S, Silva MD, Rolfe M, Bolen J, et al. Longitudinally quantitative 2-deoxy-2-[18F]fluoro-D-glucose micro positron emission tomography imaging for efficacy of new anticancer drugs: a case study with bortezomib in prostate cancer murine model. Mol Imaging Biol 2006;8(5):300–8.

    Article  PubMed  CAS  Google Scholar 

  41. Price DT, Coleman RE, Liao RP, Robertson CN, Polascik TJ, DeGrado TR. Comparison of [18F]fluorocholine and [18 F]fluorodeoxyglucose for positron emission tomography of androgen dependent and androgen independent prostate cancer. J Urol 2002;168(1):273–80.

    Article  PubMed  Google Scholar 

  42. Evangelou AI, Winter SF, Huss WJ, Bok RA, Greenberg NM. Steroid hormones, polypeptide growth factors, hormone refractory prostate cancer, and the neuroendocrine phenotype. J Cell Biochem 2004;91(4):671–83.

    Article  PubMed  CAS  Google Scholar 

  43. Freschi M, Colombo R, Naspro R, Rigatti P. Primary and pure neuroendocrine tumor of the prostate. Eur Urol 2004;45(2):166–9. discussion 9–70.

    Article  PubMed  Google Scholar 

  44. Sciarra A, Cardi A, Dattilo C, Mariotti G, Di Monaco F, Di Silverio F. New perspective in the management of neuroendocrine differentiation in prostate adenocarcinoma. Int J Clin Pract 2006;60(4):462–70.

    Article  PubMed  CAS  Google Scholar 

  45. Shimizu S, Kumagai J, Eishi Y, Uehara T, Kawakami S, Takizawa T, et al. Frequency and number of neuroendocrine tumor cells in prostate cancer: no difference between radical prostatectomy specimens from patients with and without neoadjuvant hormonal therapy. Prostate 2007;67(6):645–52.

    Article  PubMed  Google Scholar 

  46. Giovacchini G, Picchio M, Coradeschi E, Scattoni V, Bettinardi V, Cozzarini C, et al. [(11)C]Choline uptake with PET/CT for the initial diagnosis of prostate cancer: relation to PSA levels, tumour stage and anti-androgenic therapy. Eur J Nucl Med Mol Imaging 2008;35(6):1065–73.

    Article  PubMed  CAS  Google Scholar 

  47. Farsad M, Schiavina R, Castellucci P, Nanni C, Corti B, Martorana G, et al. Detection and localization of prostate cancer: correlation of (11)C-choline PET/CT with histopathologic step-section analysis. J Nucl Med 2005;46(10):1642–9.

    PubMed  CAS  Google Scholar 

  48. Gingrich JR, Barrios RJ, Morton RA, Boyce BF, DeMayo FJ, Finegold MJ, et al. Metastatic prostate cancer in a transgenic mouse. Cancer Res 1996;56(18):4096–102.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Pasquale Simonelli for technical assistance in animal preparation and imaging experiments and Dr. Maria Grazia Minotti for radiochemical production and quality controls. Supported by grants from: the Italian Ministero della Salute and Ministero dell’Università e della Ricerca and by EMIL (European Molecular Imaging Laboratory), Sixth European Program, Project No: LSHC-CT-2004-503569.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa M. Moresco.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belloli, S., Jachetti, E., Moresco, R.M. et al. Characterization of preclinical models of prostate cancer using PET-based molecular imaging. Eur J Nucl Med Mol Imaging 36, 1245–1255 (2009). https://doi.org/10.1007/s00259-009-1091-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-009-1091-3

Keywords

Navigation