Skip to main content

Advertisement

Log in

Wavelet denoising for voxel-based compartmental analysis of peripheral benzodiazepine receptors with 18F-FEDAA1106

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We evaluated the noise reduction capability of wavelet denoising for estimated binding potential (BP) images (k 3/k 4) of the peripheral benzodiazepine receptor using 18F-FEDAA1106 and nonlinear least-square fitting.

Methods

Wavelet denoising within a three-dimensional discrete dual-tree complex wavelet transform was applied to simulate data and clinical dynamic positron emission tomography images of 18F-FEDAA1106. To eliminate noise components in wavelet coefficients, real and imaginary coefficients for each subband were thresholded individually using NormalShrink. A simulated dynamic brain image of 18F-FEDAA1106 was generated and Gaussian noise was added to mimic PET dynamic scan. The derived BP images were compared with true images using 156 rectangular regions of interest. Wavelet denoising was also applied to data derived from seven young normal volunteers.

Results

In the simulations, estimated BP by denoised image showed better correlation with the true BP values (Y = 0.83X + 0.94, r = 0.80), although no correlation was observed in the estimates between noise-added and true images (Y = 1.2X + 0.78, r = 0.49). For clinical data, there were visual improvements in the signal-to-noise ratio for estimated BP images.

Conclusions

Wavelet denoising improved the bias and reduced the variation of pharmacokinetic parameters for BP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Turkheimer FE, Brett M, Visvikis D, Cunningham VJ. Multiresolution analysis of emission tomography images in the wavelet domain. J Cereb Blood Flow Metab 1999;19:1189–208.

    Article  PubMed  CAS  Google Scholar 

  2. Turkheimer FE, Brett M, Aston JA, Leff AP, Sargent PA, Wise RJ, et al. Statistical modeling of positron emission tomography images in wavelet space. J Cereb Blood Flow Metab 2000;20:1610–8.

    Article  PubMed  CAS  Google Scholar 

  3. Turkheimer FE, Banati RB, Visvikis D, Aston JA, Gunn RN, Cunningham VJ, et al. Modeling dynamic PET-SPECT studies in the wavelet domain. J Cereb Blood Flow Metab 2000;20:879–93.

    Article  PubMed  CAS  Google Scholar 

  4. Turkheimer FE, Aston J, Banati RB, Riddell C, Cunningham VJ. A linear wavelet filter for parametric imaging with dynamic PET. IEEE Trans Med Imag 2003;22:289–301.

    Article  Google Scholar 

  5. Turkheimer FE, Aston JA, Asselin MC, Hinz R. Multi-resolution Bayesian regression in PET dynamic studies using wavelets. NeuroImage 2006;32:111–21.

    Article  PubMed  CAS  Google Scholar 

  6. Anderson AN, Pavese N, Edison P, Tai YF, Hammers A, Gerhard A, et al. A systematic comparison of kinetic modeling methods generating parametric maps for [11C]-(R)-PK11195. NeuroImage 2007;32:28–37.

    Article  Google Scholar 

  7. Cselenyi Z, Olsson H, Farde L, Gulyas B. Wavelet-aided parametric mapping of cerebral dopamine D2 receptors using the high affinity PET Radioligand [11C]FLB 457. NeuroImage 2000;17:47–60.

    Article  Google Scholar 

  8. Cselenyi Z, Olsson H, Halldin C, Gulyas B, Farde L. A comparison of recent parametric neuroreceptor mapping approaches based on measurements with the high affinity PET radioligands [11C]FLB and [11C]WAY 100635. NeuroImage 2006;32:1690–708.

    Article  PubMed  Google Scholar 

  9. Millet P, Ibanez V, Delforge J, Pappata S, Guimon J. Wavelet analysis of dynamic PET data: application to the parametric imaging of benzodiazepine receptor concentration. NeuroImage 2000;11:458–72.

    Article  PubMed  CAS  Google Scholar 

  10. Alpert NM, Reilhac A, Chio TC, Selesnick I. Optimization of dynamic measurement of receptor kinetics by wavelet denoising. NeuroImage 2006;30:444–51.

    Article  PubMed  Google Scholar 

  11. Lin JW, Laine AF, Bergmann SR. Improving PET-based physiological quantification through methods of wavelet denoising. IEEE Trans Biomed Eng 2001;48:202–12.

    Article  PubMed  CAS  Google Scholar 

  12. Shin YY, Chen JC, Liu RS. Development of wavelet de-noising technique for PET images. Comput Med Imaging Graph 2005;29:297–304.

    Article  Google Scholar 

  13. Arjoul L, Bentourkia M. Study of myocardial glucose metabolism in rats with PET using wavelet analysis technique. Comput Med Imaging Graph 2005;25:357–65.

    Article  Google Scholar 

  14. Donoho D. De-noising by soft-thresholding. IEEE Trans Inform Theory 1995;41:613–27.

    Article  Google Scholar 

  15. Kimura Y, Naganawa M, Shidahara M, Ikoma Y, Watabe H. PET kinetic analysis- Pitfalls and a solution for the Logan plot. Ann Nucl Med 2007;21:1–8.

    Article  PubMed  Google Scholar 

  16. Yaqub M, Boellaard R, Kropholler MA, Lammertsma AA. Optimization algorithms and weighting factors for analysis of dynamic PET studies. Phys Med Biol 2006;51:4217–32.

    Article  PubMed  Google Scholar 

  17. Kingsbury NG. Complex wavelets for shift invariant analysis and filtering of signals. Appl Comput Harmon Anal 2001;10:234–53.

    Article  Google Scholar 

  18. Selesnick I, Li KL. Video denoising using 2D and 3D dual-tree complex wavelet transforms: Wavelet Applications in Signal and Image Processing X. Proc SPIE 2003;5207:607–18.

    Article  Google Scholar 

  19. Fujimura Y, Ikoma Y, Yasuno F, Suhara T, Ota M, Matsumoto R, et al. Quantitative analysis of 18F-FEDAA 1106 binding to peripheral benzodiazepine receptor in living human brain. J Nucl Med 2006;47:43–50.

    PubMed  CAS  Google Scholar 

  20. Mallat S. A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 1989;11:647–93.

    Article  Google Scholar 

  21. Fourati W, Bouhlel MS. A novel approach to improve the performance of JPEG2000. ICGST Inter J Graph Vis Image Process 2005;5:1–9.

    Google Scholar 

  22. Marquardt DW. An algorithm for least-squares estimation of nonlinear parameters. J Soc Ind Appl Math 1963;11:431–41.

    Article  Google Scholar 

  23. Schmidt K, Mies G, Sokoloff L. Model of kinetic behavior of deoxyglucose in heterogeneous tissue in brain: a reinterpretation of the significance of parameters fitted to homogeneous tissue models. J Cereb Blood Flow Metab 1991;11:10–24.

    PubMed  CAS  Google Scholar 

  24. Schmidt K, Turkheimer FE. Kinetic modeling in positron emission tomography. QJ Nucl Med 2002;46:70–85.

    CAS  Google Scholar 

  25. Cagnin A, Brooks DJ, Kennedy AM, Gunn R, Tuekheimer FE, Jones T, et al. In-vivo measurement of activated microglia in dementia. Lancet 2001;358:461–7.

    Article  PubMed  CAS  Google Scholar 

  26. Goerres GW, Revesz T, Duncan J, Banati RB. Imaging cerebral vasculitis in refractory epilepsy using [11C](R)-PK11195 positron emission tomography. AJR 2001;176:1016–8.

    PubMed  CAS  Google Scholar 

  27. Banati RB, Newcombe J, Gunn RN, Caqnin A, Turkheimer F, Heppner F, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123:2321–37.

    Article  PubMed  Google Scholar 

  28. Junck L, Olson JM, Ciliax BJ, Koeppe RA, Watkins GL, Jewett DM, et al. PET imaging of human gliomas with ligands for the peripheral benzodiazepine binding site. Ann Neurol 1989;26:752–8.

    Article  PubMed  CAS  Google Scholar 

  29. Pappata S, Levasseur M, Gunn RN, Myers R, Crouzel C, Syrota A, et al. Thalamic microglial activation in ischemic stroke detected in vivo by PET and [11C]PK11195. Neurology 2000;55:1052–4.

    PubMed  CAS  Google Scholar 

  30. Groom GN, Junck L, Foster NL, Frey KA, Kuhl DE, et al. PET of peripheral benzodiazepine binding sites in the microgliosis of Alzheimer’s disease. J Nucl Med 1995;36:2207–10.

    PubMed  CAS  Google Scholar 

  31. Shidahara M, Ikoma Y, Kershaw J, Kimura Y, Naganawa M, Watabe H. PET kinetic analysis: wavelet denoising of dynamic PET data with application to parametric imaging. Ann Nucl Med 2007;21:379–86.

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

This study was supported in part by the Grant-in-Aid for Young Scientists (B) and Grant-in-Aid for Scientific Research (C) from the Ministry of Education, Culture, Sports, Science and Technology, (19700395 and 18591373), Japan. We thank Mr. Katsuyuki Tanimoto, Mr. Takahiro Shiraishi, Mr. Akira Ando, and Mr. Toshio Miyamoto for their assistance in performing the PET experiments at the National Institute of Radiological Sciences. We also thank Ms. Yoshiko Fukushima of the National Institute of Radiological Sciences for her help as clinical research coordinator.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miho Shidahara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shidahara, M., Ikoma, Y., Seki, C. et al. Wavelet denoising for voxel-based compartmental analysis of peripheral benzodiazepine receptors with 18F-FEDAA1106. Eur J Nucl Med Mol Imaging 35, 416–423 (2008). https://doi.org/10.1007/s00259-007-0623-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0623-y

Keywords

Navigation