Skip to main content

Advertisement

Log in

Noninvasive in vivo monitoring of neuronal differentiation using reporter driven by a neuronal promoter

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

We imaged neuronal differentiation in vivo using dual reporters (sodium iodide symporter [NIS] and luciferase) coupled to a neuron-specific enolase (NSE) promoter.

Methods

PC12 (NSE positive) and F11 cells were transfected with a bicistronic (NIS and luciferase; pNSE-NF) or a luciferase (pNSE-Fluc) reporter coupled to the NSE promoter. Weak NSE promoter activity was overcome by a two-step transcriptional amplification (TSTA) system (pNSE-TSTA-Fluc). In vivo, NIS and luciferase expression were examined using a 99mTc-pertechnetate gamma camera and bioluminescence imaging, respectively.

Results

pNSE-NF-transfected PC12 cells showed 3-fold higher radioiodine uptakes and >100-fold higher luciferase activity than parental cells. NIS or luciferase activity was not detected in pNSE-NF-transfected HeLa cells. When F11 cells were differentiated into neurons by db-cAMP, NIS and luciferase activities increased 4-fold compared to those without treatment, which was confirmed by Western blot and RT-PCR of NSE. In vivo in pNSE-NF-transfected F11 cells, db-cAMP treatment increased the luciferase activity but not the scintigraphic activity. In vitro, pNSE-TSTA-Fluc produced 130-fold higher luciferase activity than pNSE-Fluc and neuronal differentiation showed 4-fold higher activity from both pNSE-TSTA-Fluc and pNSE-Fluc than before differentiation. In vivo, in pNSE-TSTA-Fluc-transfected F11 cells, luciferase activity increased after neuronal differentiation. In vivo luciferase activity persisted up to 2 days after db-cAMP-induced neuronal differentiation.

Conclusion

NSE promoter-driven dual reporter transgenes revealed the possibility of in vivo imaging of neuronal differentiation, which was further enabled by high amplification using a TSTA system. We propose that this strategy be used to follow the transplanted stem cells during differentiation in live animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pluchino S, Zanotti L, Deleidi M, Martino G. Neural stem cells and their use as therapeutic tool in neurological disorders. Brain Res Brain Res Rev 2005;48:211–9.

    Article  PubMed  CAS  Google Scholar 

  2. Baizabal JM, Furlan-Magaril M, Santa-Olalla J, Covarrubias L. Neural stem cells in development and regenerative medicine. Arch Med Res 2003;34:572–88.

    Article  PubMed  CAS  Google Scholar 

  3. Deng J, Petersen BE, Steindler DA, Jorgensen ML, Laywell ED. Mesenchymal stem cells spontaneously express neural proteins in culture and are neurogenic after transplantation. Stem Cells 2006;24:1054–64.

    Article  PubMed  CAS  Google Scholar 

  4. Mokry J, Karbanova J, Filip S. Differentiation potential of murine neural stem cells in vitro and after transplantation. Transplant Proc 2005;37:268–72.

    Article  PubMed  CAS  Google Scholar 

  5. Dziewczapolski G, Lie DC, Ray J, Gage FH, Shults CW. Survival and differentiation of adult rat-derived neural progenitor cells transplanted to the striatum of hemiparkinsonian rats. Exp Neurol 2003;183:653–64.

    Article  PubMed  CAS  Google Scholar 

  6. Gage FH, Coates PW, Palmer TD, Kuhn HG, Fisher LJ, Suhonen JO, et al. Survival and differentiation of adult neuronal progenitor cells transplanted to the adult brain. Proc Natl Acad Sci USA 1995;92:11879–83.

    Article  PubMed  CAS  Google Scholar 

  7. Chu K, Kim M, Park KI, Jeong SW, Park HK, Jung KH, et al. Human neural stem cells improve sensorimotor deficits in the adult rat brain with experimental focal ischemia. Brain Res 2004;1016:145–53.

    Article  PubMed  CAS  Google Scholar 

  8. Navarro-Galve B, Villa A, Bueno C, Thompson L, Johansen J, Martinez-Serrano A. Gene marking of human neural stem/precursor cells using green fluorescent proteins. J Gene Med 2005;7:18–29.

    Article  PubMed  CAS  Google Scholar 

  9. Wernig M, Benninger F, Schmandt T, Rade M, Tucker KL, Bussow H, et al. Functional integration of embryonic stem cell-derived neurons in vivo. J Neurosci 2004;24:5258–68.

    Article  PubMed  CAS  Google Scholar 

  10. Herschman HR, MacLaren DC, Iyer M, Namavari M, Bobinski K, Green LA, et al. Seeing is believing: non-invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography. J Neurosci Res 2000;59:699–705.

    Article  PubMed  CAS  Google Scholar 

  11. Wang X, Rosol M, Ge S, Peterson D, McNamara G, Pollack H, et al. Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 2003;102:3478–82.

    Article  PubMed  CAS  Google Scholar 

  12. Okada S, Ishii K, Yamane J, Iwanami A, Ikegami T, Katoh H, et al. In vivo imaging of engrafted neural stem cells: its application in evaluating the optimal timing of transplantation for spinal cord injury. Faseb J 2005;19:1839–41.

    PubMed  CAS  Google Scholar 

  13. Min JJ, Ahn Y, Moon S, Kim YS, Park JE, Kim SM, et al. In vivo bioluminescence imaging of cord blood derived mesenchymal stem cell transplantation into rat myocardium. Ann Nucl Med 2006;20:165–70.

    Article  PubMed  Google Scholar 

  14. Shah K, Weissleder R. Molecular optical imaging: applications leading to the development of present day therapeutics. NeuroRx 2005;2:215–25.

    Article  PubMed  Google Scholar 

  15. Andersen JK, Frim DM, Isacson O, Breakefield XO. Herpesvirus-mediated gene delivery into the rat brain: specificity and efficiency of the neuron-specific enolase promoter. Cell Mol Neurobiol 1993;13:503–15.

    Article  PubMed  CAS  Google Scholar 

  16. Morelli AE, Larregina AT, Smith-Arica J, Dewey RA, Southgate TD, Ambar B, et al. Neuronal and glial cell type-specific promoters within adenovirus recombinants restrict the expression of the apoptosis-inducing molecule Fas ligand to predetermined brain cell types, and abolish peripheral liver toxicity. J Gen Virol 1999;80:571–83.

    PubMed  CAS  Google Scholar 

  17. Sakimura K, Kushiya E, Ogura A, Kudo Y, Katagiri T, Takahashi Y. Upstream and intron regulatory regions for expression of the rat neuron-specific enolase gene. Brain Res Mol Brain Res 1995;28:19–28.

    Article  PubMed  CAS  Google Scholar 

  18. Marangos PJ, Schmechel DE, Parma AM, Goodwin FK. Developmental profile of neuron-specific (NSE) and non-neuronal (NNE) enolase. Brain Res 1980;190:185–93.

    Article  PubMed  CAS  Google Scholar 

  19. Niu G, Gaut AW, Ponto LL, Hichwa RD, Madsen MT, Graham MM, et al. Multimodality noninvasive imaging of gene transfer using the human sodium iodide symporter. J Nucl Med 2004;45:445–9.

    PubMed  CAS  Google Scholar 

  20. Chung JK. Sodium iodide symporter: its role in nuclear medicine. J Nucl Med 2002;43:1188–200.

    PubMed  CAS  Google Scholar 

  21. Dai G, Levy O, Carrasco N. Cloning and characterization of the thyroid iodide transporter. Nature 1996;379:458–60.

    Article  PubMed  CAS  Google Scholar 

  22. Groot-Wassink T, Aboagye EO, Wang Y, Lemoine NR, Reader AJ, Vassaux G. Quantitative imaging of Na/I symporter transgene expression using positron emission tomography in the living animal. Mol Ther 2004;9:436–42.

    Article  PubMed  CAS  Google Scholar 

  23. Iyer M, Wu L, Carey M, Wang Y, Smallwood A, Gambhir SS. Two-step transcriptional amplification as a method for imaging reporter gene expression using weak promoters. Proc Natl Acad Sci USA 2001;98:14595–600.

    Article  PubMed  CAS  Google Scholar 

  24. Zhang L, Adams JY, Billick E, Ilagan R, Iyer M, Le K, et al. Molecular engineering of a two-step transcription amplification (TSTA) system for transgene delivery in prostate cancer. Mol Ther 2002;5:223–32.

    Article  PubMed  CAS  Google Scholar 

  25. Crocker SJ, Liston P, Anisman H, Lee CJ, Smith PD, Earl N, et al. Attenuation of MPTP-induced neurotoxicity and behavioural impairment in NSE-XIAP transgenic mice. Neurobiol Dis 2003;12:150–61.

    Article  PubMed  CAS  Google Scholar 

  26. So MK, Kang JH, Chung JK, Lee YJ, Shin JH, Kim KI, et al. In vivo imaging of retinoic acid receptor activity using a sodium/iodide symporter and luciferase dual imaging reporter gene. Mol Imaging 2004;3:163–71.

    Article  PubMed  CAS  Google Scholar 

  27. Kosugi S, Sasaki N, Hai N, Sugawa H, Aoki N, Shigemasa C, et al. Establishment and characterization of a Chinese hamster ovary cell line, CHO-4J, stably expressing a number of Na+/I- symporters. Biochem Biophys Res Commun 1996;227:94–101.

    Article  PubMed  CAS  Google Scholar 

  28. Min JJ, Chung JK, Lee YJ, Shin JH, Yeo JS, Jeong JM, et al. In vitro and in vivo characteristics of a human colon cancer cell line, SNU-C5N, expressing sodium-iodide symporter. Nucl Med Biol 2002;29:537–45.

    Article  PubMed  CAS  Google Scholar 

  29. Ghil SH, Kim BJ, Lee YD, Suh-Kim H. Neurite outgrowth induced by cyclic AMP can be modulated by the alpha subunit of Go. J Neurochem 2000;74:151–8.

    Article  PubMed  CAS  Google Scholar 

  30. Acton PD, Zhou R. Imaging reporter genes for cell tracking with PET and SPECT. Q J Nucl Med Mol Imaging 2005;49:349–60.

    PubMed  CAS  Google Scholar 

  31. Kirik D, Breysse N, Bjorklund T, Besret L, Hantraye P. Imaging in cell-based therapy for neurodegenerative diseases. Eur J Nucl Med Mol Imaging 2005;32:417–34.

    Article  Google Scholar 

  32. Roy NS, Benraiss A, Wang S, Fraser RA, Goodman R, Couldwell WT, et al. Promoter-targeted selection and isolation of neural progenitor cells from the adult human ventricular zone. J Neurosci Res 2000;59:321–31.

    Article  PubMed  CAS  Google Scholar 

  33. Tang F, Shang K, Wang X, Gu J. Differentiation of embryonic stem cell to astrocytes visualized by green fluorescent protein. Cell Mol Neurobiol 2002;22:95–101.

    Article  PubMed  CAS  Google Scholar 

  34. Kang JH, Lee DS, Paeng JC, Lee JS, Kim YH, Lee YJ, et al. Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression. J Nucl Med 2005;46:479–83.

    PubMed  CAS  Google Scholar 

  35. Tsuchiya R, Yoshiki F, Kudo Y, Morita M. Cell type-selective expression of green fluorescent protein and the calcium indicating protein, yellow cameleon, in rat cortical primary cultures. Brain Res 2002;956:221–9.

    Article  PubMed  CAS  Google Scholar 

  36. Jakobsson J, Ericson C, Jansson M, Bjork E, Lundberg C. Targeted transgene expression in rat brain using lentiviral vectors. J Neurosci Res 2003;73:876–85.

    Article  PubMed  CAS  Google Scholar 

  37. Klein RL, Meyer EM, Peel AL, Zolotukhin S, Meyers C, Muzyczka N, et al. Neuron-specific transduction in the rat septohippocampal or nigrostriatal pathway by recombinant adeno-associated virus vectors. Exp Neurol 1998;150:183–94.

    Article  PubMed  CAS  Google Scholar 

  38. Brecht WJ, Harris FM, Chang S, Tesseur I, Yu GQ, Xu Q, et al. Neuron-specific apolipoprotein e4 proteolysis is associated with increased tau phosphorylation in brains of transgenic mice. J Neurosci 2004;24:2527–34.

    Article  PubMed  CAS  Google Scholar 

  39. Martinou JC, Dubois-Dauphin M, Staple JK, Rodriguez I, Frankowski H, Missotten M, et al. Overexpression of BCL-2 in transgenic mice protects neurons from naturally occurring cell death and experimental ischemia. Neuron 1994;13:1017–30.

    Article  PubMed  CAS  Google Scholar 

  40. Forss-Petter S, Danielson PE, Catsicas S, Battenberg E, Price J, Nerenberg M, et al. Transgenic mice expressing beta-galactosidase in mature neurons under neuron-specific enolase promoter control. Neuron 1990;5:187–97.

    Article  PubMed  CAS  Google Scholar 

  41. Navarro V, Millecamps S, Geoffroy MC, Robert JJ, Valin A, Mallet J, et al. Efficient gene transfer and long-term expression in neurons using a recombinant adenovirus with a neuron-specific promoter. Gene Ther 1999;6:1884–92.

    Article  PubMed  CAS  Google Scholar 

  42. Hannas-Djebbara Z, Didier-Bazs M, Sacchettoni S, Prod’hon C, Jouvet M, Belin MF, et al. Transgene expression of plasmid DNAs directed by viral or neural promoters in the rat brain. Brain Res Mol Brain Res 1997;46:91–9.

    Article  PubMed  CAS  Google Scholar 

  43. Bhattacharjee AK, Ueyama T, Kondoh T, Hayashi S, Abouelfetouh A, Sakai N, et al. In vivo transgene expression using an adenoviral tetracycline-regulated system with neuron-specific enolase promoter. Biochem Biophys Res Commun 2004;317:1144–8.

    Article  PubMed  CAS  Google Scholar 

  44. Shin JH, Chung JK, Kang JH, Lee YJ, Kim KI, So Y, et al. Noninvasive imaging for monitoring of viable cancer cells using a dual-imaging reporter gene. J Nucl Med 2004;45:2109–15.

    PubMed  Google Scholar 

  45. Lang KJ, Rathjen J, Vassilieva S, Rathjen PD. Differentiation of embryonic stem cells to a neural fate: a route to re-building the nervous system. J Neurosci Res 2004;76:184–92.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Sanjiv Gambhir of Stanford University, USA, for kindly donating the TSTA vector construct. This work was supported by the Nano Bio Regenomics Project and Radiation Science Project of the Korean Science and Engineering Foundation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Soonhag Kim or Dong Soo Lee.

Additional information

Soonhag Kim and Dong Soo Lee contributed equally to this investigation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, D.W., Kang, J.H., Jeong, J.M. et al. Noninvasive in vivo monitoring of neuronal differentiation using reporter driven by a neuronal promoter. Eur J Nucl Med Mol Imaging 35, 135–145 (2008). https://doi.org/10.1007/s00259-007-0561-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-007-0561-8

Keywords

Navigation