Skip to main content

Advertisement

Log in

Synthesis and in vivo evaluation of a novel 5-HT1A receptor agonist radioligand [O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione in nonhuman primates

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Serotonin1A (5-HT1A) receptors exist in high- and low-affinity states, and agonist ligands bind preferentially to the high-affinity state of the receptor and provide a measure of functional 5-HT1A receptors. Although the antagonist tracers are established PET ligands in clinical studies, a successful 5-HT1A receptor agonist radiotracer in living brain has not been reported. [11C]MPT, our first-generation agonist radiotracer, shows in vivo specificity in baboons; however, its utility is limited owing to slow washout and immeasurable plasma free fraction. Hence we performed structure-activity relationship studies of MPT to optimize a radiotracer that will permit valid quantification of 5-HT1A receptor binding. We now report the synthesis and evaluation of [11C]MMP as an agonist PET tracer for 5-HT1A receptors in baboons.

Methods

In vitro binding assays were performed in bovine hippocampal membranes and membranes of CHO cells expressing 5-HT1A receptors. [11C] labeling of MMP was performed by reacting desmethyl-MMP with [11C]CH3OTf. In vivo studies were performed in baboons, and blocking studies were conducted by pretreatment with 5-HT1A receptor ligands WAY-100635 and (±)-8-OH-DPAT.

Results

MMP is a selective 5-HT1A receptor agonist (K i 0.15 nM). Radiosynthesis of [11C]MMP was achieved in 30 ± 5% (n = 15) yield at EOS with a specific activity of 2,600 ± 500 Ci/mmol (n = 12). PET studies in baboons demonstrated specific binding of [11C]MMP to 5-HT1A receptor-enriched brain regions, as confirmed by blockade with WAY-100635 and (±)-8-OH-DPAT.

Conclusion

We identified [11C]MMP as an optimal agonist PET tracer that shows quantifiable, specific binding in vivo to 5-HT1A receptors in baboons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Herrick DK. Constitutively active serotonin receptors. Method Princip Med Chem 2005;24:223–41.

    Google Scholar 

  2. Hensler JG. Regulation of 5-HT1A receptor functions in brain following agonist or antidepressant administration. Life Sci 2003;72:1665–82.

    Article  PubMed  CAS  Google Scholar 

  3. Neumeister A, Bain E, Nugent AC, Carson RE, Bonne O, Luckenbaugh DA, et al. Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci 2004;24:589–91.

    Article  PubMed  CAS  Google Scholar 

  4. Arango V, Underwood MD, Boldrini M, Tamir H, Kassir SA, Hsiung S-C, et al. Serotonin1A receptors, serotonin transporter binding and serotonin transporter mRNA expression in the brainstem of depressed suicide victims. Neuropsychopharmacology 2001;25:892–903.

    Article  PubMed  CAS  Google Scholar 

  5. Arango V, Huang YY, Underwood MD, Mann JJ. Genetics of the serotonergic system in suicidal behavior. J Psychiatric Res 2003;37:375–86.

    Article  Google Scholar 

  6. Sullivan GM, Oquendo MA, Simpson N, Van Heertum RL, Mann JJ, Parsey RV. Brain serotonin1A receptor binding in depression is related to psychic and somatic anxiety. Biol Psychiatry 2005;58:947–54.

    Article  PubMed  CAS  Google Scholar 

  7. Merlet I, Ostrowsky K, Costes N, Ryvlin P, Isnard J, Faillenot I, et al. 5-HT1A receptor binding and intracerebral activity in temporal lobe epilepsy: an [18F]MPPF-PET study. Brain 2004;127:900–13.

    Article  PubMed  Google Scholar 

  8. Tiihonen J, Keski-Rahkonen A, Lopponen M, Muhonen M, Kajander J, Allonen T, et al. Brain serotonin 1A receptor binding in bulimia nervosa. Biol Psychiatry 2004;55:871–3.

    Article  PubMed  CAS  Google Scholar 

  9. Kepe V, Barrio JR, Huang S-C, Ercoli L, Siddarth P, Shoghi-Jadid K, et al. Serotonin1A receptors in the living brain of Alzheimer’s disease patients. Proc Natl Acad Sci USA 2006;103:702–7.

    Article  PubMed  CAS  Google Scholar 

  10. Kuenzel HE, Steiger A, Held K, Antonijevic IA, Frieboes R-M, Murck H. Changes in sleep electroencephalogram and nocturnal hormone secretion after administration of the antidyskinetic agent sarizotan in healthy young male volunteers. Psychopharmacology 2005;180:327–32.

    Article  PubMed  CAS  Google Scholar 

  11. Lai MKP, Tsang SWY, Francis PT, Esiri MM, Keene J, Hope T, et al. Reduced serotonin 5-HT1A receptor binding in the temporal cortex correlates with aggressive behavior in Alzheimer disease. Brain Res 2003;974:82–7.

    Article  PubMed  CAS  Google Scholar 

  12. Lopez RML, Ayala D, Benhamu B, Morcillo MJ, Viso A. Arylpiperazine derivatives acting at 5-HT1A receptors. Curr Med Chem 2002;9:443–69.

    Google Scholar 

  13. Meltzer HY, Li Z, Kaneda Y, Ichikawa J. Serotonin receptors: their key role in drugs to treat schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2003;27:1159–72.

    Article  PubMed  CAS  Google Scholar 

  14. Burnet PWJ, Eastwood SL, Harrison PJ. [3H]WAY-100635 for 5-HT1A receptor autoradiography in human brain: a comparison with [3H]8-OH-DPAT and demonstration of increased binding in the frontal cortex in schizophrenia. Neurochem Internat 1997;30:565–74.

    Article  CAS  Google Scholar 

  15. Hall H, Lundkvist C, Halldin C, Farde L, Pike VW, McCarron JA, et al. Autoradiographic localization of 5-HT1A receptors in the post-mortem human brain using [3H]WAY-100635 and [11C]WAY-100635. Brain Res 1997;745:96–108.

    Article  PubMed  CAS  Google Scholar 

  16. Arango V, Underwood MD, Gubbi AV, Mann JJ. Localized alterations in pre- and postsynaptic serotonin binding sites in the ventrolateral prefrontal cortex of suicide victims. Brain Res 1995;688:121–33.

    Article  PubMed  CAS  Google Scholar 

  17. Parsey RV, Oquendo MA, Ogden RT, Olvet DM, Simpson N, Huang Y, et al. Altered serotonin 1A binding in major depression: a [carbonyl-C-11]WAY100635 positron emission tomography study. Biol Psychiatry 2006;59:106–13.

    Article  PubMed  CAS  Google Scholar 

  18. Parsey RV, Oquendo MA, Simpson NR, Ogden RT, Van Heertum RL, Arango V, et al. Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635. Brain Res 2002;954:173–82.

    Article  PubMed  CAS  Google Scholar 

  19. Clawges HM, Depree KM, Parker EM, Graber SG. Human 5-HT1 receptor subtypes exhibit distinct G protein coupling behaviors in membranes from Sf9 cells. Biochemistry 1997;36:12930–8.

    Article  PubMed  CAS  Google Scholar 

  20. Watson J, Collin L, Ho M, Riley G, Scott C, Selkirk JV, et al. 5-HT1A receptor agonist-antagonist binding affinity difference as a measure of intrinsic activity in recombinant and native tissue systems. Br J Pharmacol 2000;130:1108–14.

    Article  PubMed  CAS  Google Scholar 

  21. Gozlan H, Thibault S, Laporte AM, Lima L, Hamon M. The selective 5-HT1A antagonist radioligand [3H]WAY 100635 labels both G-protein-coupled and free 5-HT1A receptors in rat brain membranes. Eur J Pharmacol 1995;288:173–86.

    Article  PubMed  CAS  Google Scholar 

  22. Mongeau R, Welner SA, Quirion R, Suranyi-Cadotte BE. Further evidence for differential affinity states of the serotonin1A receptor in rat hippocampus. Brain Res 1992;590:229–38.

    Article  PubMed  CAS  Google Scholar 

  23. Bailer UF, Frank GK, Henry SE, Price JC, Meltzer CC, Weissfeld L, et al. Altered brain serotonin 5-HT1A receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [carbonyl-11C]WAY-100635. Arch Gen Psychiatry 2005;62:1032–41.

    Article  PubMed  CAS  Google Scholar 

  24. Cleare AJ, Messa C, Rabiner EA, Grasby PM. Brain 5-HT1A receptor binding in chronic fatigue syndrome measured using positron emission tomography and [11C]WAY-100635. Biol Psychiatry 2005;57:239–46.

    Article  PubMed  CAS  Google Scholar 

  25. Kegeles LS, Mann JJ. In vivo imaging of neurotransmitter systems using radiolabeled receptor ligands. Neuropsychopharmacology 1997;17:293–307.

    Article  PubMed  CAS  Google Scholar 

  26. Cumming P, Gillings NM, Jensen SB, Bjarkam C, Gjedde A. Kinetics of the uptake and distribution of the dopamine D2,3 agonist (R)-N-[1-11C]n-propylnorapomorphine in brain of healthy and MPTP-treated Gottingen miniature pigs. Nucl Med Biol 2003;30:547–53.

    Article  PubMed  CAS  Google Scholar 

  27. Cumming P, Wong DF, Gillings N, Hilton J, Scheffel U, Gjedde A. Specific binding of [11C]raclopride and N-[3H]propyl-norapomorphine to dopamine receptors in living mouse striatum: occupancy by endogenous dopamine and guanosine triphosphate-free G protein. J Cereb Blood Flow Metab 2002;22:596–604.

    Article  PubMed  CAS  Google Scholar 

  28. Narendran R, Hwang DR, Slifstein M, Talbot PS, Erritzoe D, Huang Y, et al. In vivo vulnerability to competition by endogenous dopamine: comparison of the D2 receptor agonist radiotracer (-)-N-[11C]propyl-norapomorphine ([11C]NPA) with the D2 receptor antagonist radiotracer [11C]-raclopride. Synapse 2004;52:188–208.

    Article  PubMed  CAS  Google Scholar 

  29. Hirsch SR, Kissling W, Bauml J, Power A, O’Connor R. A 28-week comparison of ziprasidone and haloperidol in outpatients with stable schizophrenia. J Clin Psychiatry 2002;63:516–23.

    PubMed  CAS  Google Scholar 

  30. Passchier J, van Waarde A. Visualization of serotonin-1A (5-HT1A) receptors in the central nervous system. Eur J Nucl Med 2001;28:113–29.

    Article  PubMed  CAS  Google Scholar 

  31. Gozlan H, Ponchant M, Daval G, Verge D, Menard F, Vanhove A, et al. 125I-Bolton-Hunter-8-methoxy-2-[N-propyl-N-propylamino]tetralin as a new selective radioligand of 5-HT1A sites in the rat brain. In vitro binding and autoradiographic studies. J Pharmacol Exp Ther 1988;244:751–9.

    PubMed  CAS  Google Scholar 

  32. Ponchant M, Beaucourt JP, Vanhove A, Daval G, Verge D, Hamon M, et al. [125I-BH-8-MeO-N-PAT, a new ligand for the study of 5-HT1A receptors in the central nervous system]. C R Acad Sci III 1988;306:147–52.

    PubMed  CAS  Google Scholar 

  33. Zhuang ZP, Kung MP, Kung HF. Synthesis of (R,S)-trans-8-hydroxy-2-[N-n-propyl-N-(3′-iodo-2′-propenyl)amino]tetral in (trans-8-OH-PIPAT): a new 5-HT1A receptor ligand. J Med Chem 1993;36:3161–5.

    Article  PubMed  CAS  Google Scholar 

  34. Halldin C, Wikstrom H, Swahn CG, Sedvall G, Stjernlof P, Farde L. Preparation of [propyl-11C]OSU 191, a highly potent and selective 5-HT1A agonist for PET [abstract]. J Label Compd Radiopharm 1994;35:S675–7.

    Google Scholar 

  35. Suehiro M, Underwood M, Arango V, Wang TS, Kassir S, Bakalian M, et al. In vivo biodistribution of a radiotracer for imaging serotonin-1A receptor sites with PET: [11C]LY274601. Life Sci 1998;63:1533–42.

    Article  PubMed  CAS  Google Scholar 

  36. Mathis CA, Huang Y, Simpson NR. Synthesis and evaluation of 5-HT1A agonists as radioligands: failure of G protein-coupled receptor agonists as in vivo imaging agents. J Label Compd Radiopharm 1997;40:563–4.

    Google Scholar 

  37. Thorell JO, Hedberg MH, Johansson AM, Hacksell U, Stone-Elander S, Eriksson L, et al. (R)-[N-11C-methyl]-11-hydroxy-10-methylaporphine as a ligand for 5-HT1A receptors: synthesis and evaluation of its biodistribution in monkey with PET. J Label Compd Radiopharm 1995;44:S179.

    Google Scholar 

  38. Barf TA, Visser GM, van Waarde A, Korte SM, Postema F, Leyssen D, et al. Synthesis and biodistribution of [C-11]Org-13502, a high-affinity serotonin (5-HT1A) receptor ligand. J Nucl Med 1995;36:163.

    Google Scholar 

  39. Fujio M, Nagata S, Kawamura K, Sugiyama N, Tanaka H, Uno K, et al. Synthesis and evaluation of 11C-labeled (S)-N-{[1-(2-phenylethyl) pyrrolidin-2-yl]methyl}-3-methylthiobenzamide as a PET 5-HT1A receptor ligand. Nucl Med Biol 2002;29:657–63.

    Article  PubMed  CAS  Google Scholar 

  40. Hwang DR, Ngo K, Savenkova L, Huang Y, Guo NN, Zhu Z, et al. 1-[2[(4-[F-18]fluorobenzamido-1-ethyl]4-(1,2,3,4-tetrahydronaphth-1-yl)-piperidine (FBP). J Label Compd Radiopharm 2001;44:S179.

    Google Scholar 

  41. Vandecapelle M, Dumont F, De Vos F, Strijckmans K, Leysen D, Audenaert K, et al. Synthesis and preliminary in vivo evaluation of 4-[18F]fluoro-N-{2-[4-(6-trifluoromethylpyridin-2-yl)piperazin-1-yl]ethyl}benzamide, a potential PET radioligand for the 5-HT1A receptor. J Label Compd Radiopharm 2004;47:531–42.

    Article  CAS  Google Scholar 

  42. Vandecapelle M, De Vos F, Vermeirsch H, De Ley G, Audenaert K, Leysen D, et al. In vivo evaluation of 4-[123I]iodo-N-[2[4-(6-trifluoromethyl-2-pyridinyl)-1-piperazinyl]ethyl]benzamide, a potential SPECT radioligand for the 5-HT1A receptor. Nucl Med Biol 2001;28:639–43.

    Article  PubMed  CAS  Google Scholar 

  43. Zimmer L, Fournet G, Benoit J, Guillaumet G, Le Bars D. Carbon-11 labelling of 8{{3-[4-(2-[11C]methoxyphenyl)piperazin-1-yl]-2-hydroxypropyl}oxy}thiochroman, a presynaptic 5-HT1A receptor agonist, and its in vivo evaluation in anaesthetised rat and in awake cat. Nucl Med Biol 2003;30:541–6.

    Article  PubMed  CAS  Google Scholar 

  44. Lu S-Y, Hong J, Musachio JL, Chin FT, Vermeulen ES, Wikstrom HV, et al. Alternative methods for labeling the 5-HT1A receptor agonist, 1-[2-(4-fluorobenzoylamino)ethyl]-4-(7-methoxynaphthyl)piperazine (S14506), with carbon-11 or fluorine-18. J Label Compd Radiopharm 2005;48:971–81.

    Article  CAS  Google Scholar 

  45. Kumar JSD, Majo VJ, Hsiung S-C, Millak MS, Liu K-P, Tamir H, et al. Synthesis and in vivo validation of [O-Methyl-11C]-2-[4-[4-(7-methoxy-1-naphthalenyl)-1-piperazinyl]butyl]-4-methyl-2H-[1,2,4]triazine-3,5-dione: a novel 5-HT1A receptor agonist positron emission tomography ligand. J Med Chem 2006;49:125–34.

    Article  PubMed  CAS  Google Scholar 

  46. Mann JJ, Kumar JSD. Radiolabeled compounds and uses thereof. WO 2006083424, 2006;55.

  47. Prabhakaran J, Parsey RV, Hsiung S-C, Majo VJ, Millak MS, Tamir H, et al. Synthesis, in vitro and in vivo evaluation of [O-methyl-11C]2-{4-[4-(3-methoxyphenyl)piperazin-1-yl]-butyl}-4-methyl-2H-[1,2,4]- triazine-3,5-dione as an agonist PET ligand for 5-HT1A receptors. Bioorg Med Chem Lett 2006;16:2101–4.

    Article  PubMed  CAS  Google Scholar 

  48. Kumar JSD, Prabhakaran J, Arango V, Parsey RV, Underwood MD, Simpson NR, et al. Synthesis of [O-methyl-11C]1-(2-chlorophenyl)-5-(4-methoxyphenyl)-4-methyl-1H-pyrazole-3-carboxylic acid piperidin-1-ylamide: a potential PET ligand for CB1 receptors. Bioorg Med Chem Lett 2004;14:2393–6.

    Article  PubMed  CAS  Google Scholar 

  49. Wilson AA, Jin L, Garcia A, DaSilva JN, Houle S. An admonition when measuring the lipophilicity of radiotracers using counting techniques. Appl Radiat Isot 2001;54:203–8.

    Article  PubMed  CAS  Google Scholar 

  50. Hoyer D, Engel G, Kalkman, HO. Molecular pharmacology of 5-HT1 and 5-HT2 recognition sites in rat and pig brain membranes: radioligand binding studies with [3H]-5HT, [3H]-8-OH-DPAT, [125I]iodocyanopindolol, [3H]-mesulergine and [3H]-ketanserin. Eur J Pharmacol 1985;118:13–23.

    Article  PubMed  CAS  Google Scholar 

  51. Newman-Tancredi A, Cussac D, Marini L, Millan MJ. Antibody capture assay reveals bell-shaped concentration-response isotherms for h5-HT1A receptor-mediated Gai3 activation: conformational selection by high-efficacy agonists, and relationship to trafficking of receptor signaling. Mol Pharmacol 2002;62:590–601.

    Article  PubMed  CAS  Google Scholar 

  52. Woods RP, Grafton ST, Holmes CJ, Cherry SR, Mazziotta JC. Automated image registration: I. General methods and intrasubject, intramodality validation. J Comput Assist Tomogr 1998;22:139–52.

    Article  PubMed  CAS  Google Scholar 

  53. Gandelman MS, Baldwin RM, Zoghbi SS, Zea-Ponce Y, Innis RB. Evaluation of ultrafiltration for the free-fraction determination of single photon emission computed tomography (SPECT) radiotracers beta-CIT, IBF, and iomazenil. J Pharm Sci 1994;83:1014–9.

    Article  PubMed  CAS  Google Scholar 

  54. Langer O, Halldin C, Chou Y, Sandell J, Swahn C, Nagren K, et al. Carbon-11 pb-12: an attempt to visualize the dopamine d4 receptor in the primate brain with positron emission tomography. Nucl Med Biol 2000;27:707–14.

    Article  PubMed  CAS  Google Scholar 

  55. Zhang MR, Haradahira T, Maeda J, Okauchi T, Kawabe K, Noguchi J, et al. Syntheses and pharmacological evaluation of two potent antagonists for dopamine D4 receptors: [11C]YM-50001 and N-[2-[4-(4-chlorophenyl)-piperizin-1-yl]ethyl]-3-[11C]methoxybenzamide. Nucl Med Biol 2002;29:233–41.

    Article  PubMed  CAS  Google Scholar 

  56. Stowe RL, Barnes NM. Selective labelling of 5-HT7 receptor recognition sites in rat brain using [3H]5-carboxamidotryptamine. Neuropharmacology 1998;37:1611–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by research grants from the National Institute of Health (P50 MH62185, R21 MH077161 and K08 MH76258-01A1). The authors thank Dr. Bryan Roth and the NIMH-PDSP program for the competitive receptor-transporter binding assays. Ms. Agata Bukowska assisted in the radiolabeling studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Dileep Kumar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kumar, J.S.D., Prabhakaran, J., Majo, V.J. et al. Synthesis and in vivo evaluation of a novel 5-HT1A receptor agonist radioligand [O-methyl-11C]2-(4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)-4-methyl-1,2,4-triazine-3,5(2H,4H)dione in nonhuman primates. Eur J Nucl Med Mol Imaging 34, 1050–1060 (2007). https://doi.org/10.1007/s00259-006-0324-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-006-0324-y

Keywords

Navigation