Skip to main content

Advertisement

Log in

Human gene therapy and imaging in neurological diseases

  • Supplement
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

An Erratum to this article was published on 14 February 2006

Abstract

Molecular imaging aims to assess non-invasively disease-specific biological and molecular processes in animal models and humans in vivo. Apart from precise anatomical localisation and quantification, the most intriguing advantage of such imaging is the opportunity it provides to investigate the time course (dynamics) of disease-specific molecular events in the intact organism. Further, molecular imaging can be used to address basic scientific questions, e.g. transcriptional regulation, signal transduction or protein/protein interaction, and will be essential in developing treatment strategies based on gene therapy. Most importantly, molecular imaging is a key technology in translational research, helping to develop experimental protocols which may later be applied to human patients. Over the past 20 years, imaging based on positron emission tomography (PET) and magnetic resonance imaging (MRI) has been employed for the assessment and “phenotyping” of various neurological diseases, including cerebral ischaemia, neurodegeneration and brain gliomas. While in the past neuro-anatomical studies had to be performed post mortem, molecular imaging has ushered in the era of in vivo functional neuro-anatomy by allowing neuroscience to image structure, function, metabolism and molecular processes of the central nervous system in vivo in both health and disease. Recently, PET and MRI have been successfully utilised together in the non-invasive assessment of gene transfer and gene therapy in humans. To assess the efficiency of gene transfer, the same markers are being used in animals and humans, and have been applied for phenotyping human disease. Here, we review the imaging hallmarks of focal and disseminated neurological diseases, such as cerebral ischaemia, neurodegeneration and glioblastoma multiforme, as well as the attempts to translate gene therapy’s experimental knowledge into clinical applications and the way in which this process is being promoted through the use of novel imaging approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jacobs A, Voges J, Reszka R, Lercher M, Gossmann A, Kracht L, et al. Positron-emission tomography of vector-mediated gene expression in gene therapy for gliomas. Lancet 2001;358(9283):727-9

    Article  PubMed  Google Scholar 

  2. Ghaemi M, Hilker R, Rudolf J, Sobesky J, Heiss WD. Differentiating multiple system atrophy from Parkinson’s disease: contribution of striatal and midbrain MRI volumetry and multi-tracer PET imaging. J Neurol Neurosurg Psychiatry 2002;73(5):517-23

    Article  PubMed  Google Scholar 

  3. Heiss WD. Best measure of ischemic penumbra: positron emission tomography. Stroke 2003;34(10):2534-5

    Article  PubMed  Google Scholar 

  4. Hilker R, Klein C, Hedrich K, Ozelius LJ, Vieregge P, Herholz K, et al. The striatal dopaminergic deficit is dependent on the number of mutant alleles in a family with mutations in the parkin gene: evidence for enzymatic parkin function in humans. Neurosci Lett 2002;323(1):50-4

    Article  PubMed  Google Scholar 

  5. Kracht LW, Miletic H, Busch S, Jacobs AH, Voges J, Hoevels M, et al. Delineation of brain tumor extent with [11C] l-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 2004;10(21):7163-70

    Article  PubMed  Google Scholar 

  6. Sobesky J, Zaro WO, Lehnhardt FG, Hesselmann V, Neveling M, Jacobs A, et al. Does the mismatch match the penumbra? Magnetic resonance imaging and positron emission tomography in early ischemic stroke. Stroke 2005;36(5):980-5

    Article  PubMed  Google Scholar 

  7. Davidson BL, Breakefield XO. Viral vectors for gene delivery to the nervous system. Nat Rev Neurosci 2003;4(5):353-64

    Article  PubMed  Google Scholar 

  8. Castro MG, Cowen R, Williamson IK, David A, Jimenez-Dalmaroni MJ, Yuan X, et al. Current and future strategies for the treatment of malignant brain tumors. Pharmacol Ther 2003;98(1):71-108

    Article  PubMed  Google Scholar 

  9. Azzouz M, Kingsman SM, Mazarakis ND. Lentiviral vectors for treating and modeling human CNS disorders. J Gene Med 2004;6(9):951-62

    Article  PubMed  Google Scholar 

  10. Castro MG, David A, Hurtado-Lorenzo A, Suwelack D, Millan E, Verakis T, et al. Gene therapy for Parkinson’s disease: recent achievements and remaining challenges. Histol Histopathol 2001;16(4):1225-38

    PubMed  Google Scholar 

  11. Davidson BL, Paulson HL. Molecular medicine for the brain: silencing of disease genes with RNA interference. Lancet Neurol 2004;3(3):145-9

    Article  PubMed  Google Scholar 

  12. Fountaine TM, Wood MJ, Wade-Martins R. Delivering RNA interference to the mammalian brain. Curr Gene Ther 2005;5(4):399-410

    Article  PubMed  Google Scholar 

  13. Frampton AR Jr, Goins WF, Nakano K, Burton EA, Glorioso JC. HSV trafficking and development of gene therapy vectors with applications in the nervous system. Gene Ther 2005;12(11):891-901

    Article  PubMed  Google Scholar 

  14. Goverdhana S, Puntel M, Xiong W, Zirger JM, Barcia C, Curtin JF, et al. Regulatable gene expression systems for gene therapy applications: progress and future challenges. Mol Ther 2005;12(2):189-211

    Article  PubMed  Google Scholar 

  15. Lowenstein PR, Suwelack D, Hu J, Yuan X, Jimenez-Dalmaroni M, Goverdhana S, et al. Nonneurotropic adenovirus: a vector for gene transfer to the brain and gene therapy of neurological disorders. Int Rev Neurobiol 2003;55:3-64

    PubMed  Google Scholar 

  16. Lowenstein PR, Castro MG. Inflammation and adaptive immune responses to adenoviral vectors injected into the brain: peculiarities, mechanisms, and consequences. Gene Ther 2003;10(11):946-54

    Article  PubMed  Google Scholar 

  17. Lowenstein PR, Castro MG. Recent advances in the pharmacology of neurological gene therapy. Curr Opin Pharmacol 2004;4(1):91-7

    Article  PubMed  Google Scholar 

  18. Mandel RJ, Burger C. Clinical trials in neurological disorders using AAV vectors: promises and challenges. Curr Opin Mol Ther 2004;6(5):482-90

    PubMed  Google Scholar 

  19. Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet 2003;4(5):346-58

    Article  PubMed  Google Scholar 

  20. Ralph GS, Mazarakis ND, Azzouz M. Therapeutic gene silencing in neurological disorders, using interfering RNA. J Mol Med 2005;83(6):413-9

    Article  PubMed  Google Scholar 

  21. Deglon N, Hantraye P. Viral vectors as tools to model and treat neurodegenerative disorders. J Gene Med 2005;7(5):530-9

    Article  PubMed  Google Scholar 

  22. Kirik D, Bjorklund A. Modeling CNS neurodegeneration by overexpression of disease-causing proteins using viral vectors. Trends Neurosci 2003;26(7):386-92

    Article  PubMed  Google Scholar 

  23. Harper SQ, Staber PD, He X, Eliason SL, Martins IH, Mao Q, et al. RNA interference improves motor and neuropathological abnormalities in a Huntington’s disease mouse model. Proc Natl Acad Sci U S A 2005;102(16):5820-5

    Article  PubMed  Google Scholar 

  24. Xia H, Mao Q, Paulson HL, Davidson BL. siRNA-mediated gene silencing in vitro and in vivo. Nat Biotechnol 2002;20(10):1006-10

    Article  PubMed  Google Scholar 

  25. Xia H, Mao Q, Eliason SL, Harper SQ, Martins IH, Orr HT, et al. RNAi suppresses polyglutamine-induced neurodegeneration in a model of spinocerebellar ataxia. Nat Med 2004;10(8):816-20

    Article  PubMed  Google Scholar 

  26. Jacobs A, Fraefel C, Breakefield XO. HSV-1 based vectors for gene therapy of neurological diseases and brain tumors: Part II: Vector systems and applications. Neoplasia 1999;1(5):402-16

    Article  PubMed  Google Scholar 

  27. Jacobs A, Fraefel C, Breakefield XO. HSV-1 based vectors for gene therapy of neurological diseases and brain tumors: Part I: HSV-1 structure, replication and pathogenesis. Neoplasia 1999;1(5):387-401

    Article  PubMed  Google Scholar 

  28. Ikeda K, Ichikawa T, Wakimoto H, Silver JS, Deisboeck TS, Finkelstein D, et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 1999;5(8):881-7

    Article  PubMed  Google Scholar 

  29. Harsh GR, Deisboeck TS, Louis DN, Hilton J, Colvin M, Silver JS, et al. Thymidine kinase activation of ganciclovir in recurrent malignant gliomas: a gene-marking and neuropathological study. J Neurosurg 2000;92(5):804-11

    PubMed  Google Scholar 

  30. Chiocca EA, Abbed KM, Tatter S, Louis DN, Hochberg FH, Barker F, et al. A phase I open-label, dose-escalation, multi-institutional trial of injection with an E1B-attenuated adenovirus, ONYX-015, into the peritumoral region of recurrent malignant gliomas, in the adjuvant setting. Mol Ther 2004;10(5):958-66

    Article  PubMed  Google Scholar 

  31. Ali S, King GD, Curtin JF, Candolfi M, Xiong W, Liu C, et al. Combined immunostimulation and conditional cytotoxic gene therapy provide long-term survival in a large glioma model. Cancer Res 2005;65(16):7194-204

    Article  PubMed  Google Scholar 

  32. Fulci G, Chiocca EA. Oncolytic viruses for the therapy of brain tumors and other solid malignancies: a review. Front Biosci 2003;8:e346-60

    PubMed  Google Scholar 

  33. Immonen A, Vapalahti M, Tyynela K, Hurskainen H, Sandmair A, Vanninen R, et al. AdvHSV-tk gene therapy with intravenous ganciclovir improves survival in human malignant glioma: a randomised, controlled study. Mol Ther 2004;10(5):967-72

    Article  PubMed  Google Scholar 

  34. Jacobs A, Tjuvajev JG, Dubrovin M, Akhurst T, Balatoni J, Beattie B, et al. Positron emission tomography-based imaging of transgene expression mediated by replication-conditional, oncolytic herpes simplex virus type 1 mutant vectors in vivo. Cancer Res 2001;61(7):2983-95

    PubMed  Google Scholar 

  35. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T, Hunter WD, et al. Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 2000;7(10):867-74

    Article  PubMed  Google Scholar 

  36. Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D, et al. Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 2000;7(10):859-66

    Article  PubMed  Google Scholar 

  37. Kay MA, Glorioso JC, Naldini L. Viral vectors for gene therapy: the art of turning infectious agents into vehicles of therapeutics. Nat Med 2001;7(1):33-40

    Article  PubMed  Google Scholar 

  38. Suwelack D, Hurtado-Lorenzo A, Millan E, Gonzalez-Nicolini V, Wawrowsky K, Lowenstein PR, et al. Neuronal expression of the transcription factor Gli1 using the Talpha1 alpha-tubulin promoter is neuroprotective in an experimental model of Parkinson’s disease. Gene Ther 2004;11(24):1742-52

    Article  PubMed  Google Scholar 

  39. Oehmig A, Fraefel C, Breakefield XO, Ackermann M. Herpes simplex virus type 1 amplicons and their hybrid virus partners, EBV, AAV, and retrovirus. Curr Gene Ther 2004;4(4):385-408

    PubMed  Google Scholar 

  40. Zaupa C, Revol-Guyot V, Epstein AL. Improved packaging system for generation of high-level noncytotoxic HSV-1 amplicon vectors using Cre-loxP site-specific recombination to delete the packaging signals of defective helper genomes. Hum Gene Ther 2003;14(11):1049-63

    Article  PubMed  Google Scholar 

  41. Abordo-Adesida E, Follenzi A, Barcia C, Sciascia S, Castro MG, Naldini L, et al. Stability of lentiviral vector-mediated transgene expression in the brain in the presence of systemic antivector immune responses. Hum Gene Ther 2005;16(6):741-51

    Article  PubMed  Google Scholar 

  42. Hartigan-O’Connor D, Barjot C, Salvatori G, Chamberlain JS. Generation and growth of gutted adenoviral vectors. Methods Enzymol 2002;346:224-46

    PubMed  Google Scholar 

  43. Jiang Z, Schiedner G, Gilchrist SC, Kochanek S, Clemens PR. CTLA4Ig delivered by high-capacity adenoviral vector induces stable expression of dystrophin in mdx mouse muscle. Gene Ther 2004;11(19):1453-61

    Article  PubMed  Google Scholar 

  44. Morral N, O’Neal W, Rice K, Leland M, Kaplan J, Piedra PA, et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci U S A 1999;96(22):12816-21

    Article  PubMed  Google Scholar 

  45. Morsy MA, Gu M, Motzel S, Zhao J, Lin J, Su Q, et al. An adenoviral vector deleted for all viral coding sequences results in enhanced safety and extended expression of a leptin transgene. Proc Natl Acad Sci U S A 1998;95(14):7866-71

    Article  PubMed  Google Scholar 

  46. Palmer D, Ng P. Improved system for helper-dependent adenoviral vector production. Mol Ther 2003;8(5):846-52

    Article  PubMed  Google Scholar 

  47. Palmer DJ, Ng P. Physical and infectious titers of helper-dependent adenoviral vectors: a method of direct comparison to the adenovirus reference material. Mol Ther 2004;10(4):792-8

    Article  PubMed  Google Scholar 

  48. Parks RJ, Chen L, Anton M, Sankar U, Rudnicki MA, Graham FL. A helper-dependent adenovirus vector system: removal of helper virus by Cre-mediated excision of the viral packaging signal. Proc Natl Acad Sci U S A 1996;93(24):13565-70

    Article  PubMed  Google Scholar 

  49. Peden CS, Burger C, Muzyczka N, Mandel RJ. Circulating anti-wild-type adeno-associated virus type 2 (AAV2) antibodies inhibit recombinant AAV2 (rAAV2)-mediated, but not rAAV5-mediated, gene transfer in the brain. J Virol 2004;78(12):6344-59

    Article  PubMed  Google Scholar 

  50. Sanftner LM, Suzuki BM, Doroudchi MM, Feng L, McClelland A, Forsayeth JR, et al. Striatal delivery of rAAV-hAADC to rats with preexisting immunity to AAV. Mol Ther 2004;9(3):403-9

    Article  PubMed  Google Scholar 

  51. Schiedner G, Morral N, Parks RJ, Wu Y, Koopmans SC, Langston C, et al. Genomic DNA transfer with a high-capacity adenovirus vector results in improved in vivo gene expression and decreased toxicity. Nat Genet 1998;18(2):180-3

    Article  PubMed  Google Scholar 

  52. Thomas CE, Schiedner G, Kochanek S, Castro MG, Lowenstein PR. Preexisting antiadenoviral immunity is not a barrier to efficient and stable transduction of the brain, mediated by novel high-capacity adenovirus vectors. Hum Gene Ther 2001;12(7):839-46

    Article  PubMed  Google Scholar 

  53. Reszka RC, Jacobs A, Voges J. Liposome-mediated suicide gene therapy in humans. Methods Enzymol 2005;391:200-8

    Article  PubMed  Google Scholar 

  54. da Cruz MT, Cardoso AL, de Almeida LP, Simoes S, de Lima MC. Tf-lipoplex-mediated NGF gene transfer to the CNS: neuronal protection and recovery in an excitotoxic model of brain injury. Gene Ther 2005;12(16):1242-52

    Article  PubMed  Google Scholar 

  55. Lowenstein PR. Virology and immunology of gene therapy, or virology and immunology of high MOI infection with defective viruses. Gene Ther 2003;10(11):933-4

    Article  PubMed  Google Scholar 

  56. Heiss WD, Graf R, Wienhard K, Lottgen J, Saito R, Fujita T, et al. Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab 1994;14(6):892-902

    PubMed  Google Scholar 

  57. Sobesky J, Zaro WO, Lehnhardt FG, Hesselmann V, Thiel A, Dohmen C, et al. Which time-to-peak threshold best identifies penumbral flow? A comparison of perfusion-weighted magnetic resonance imaging and positron emission tomography in acute ischemic stroke. Stroke 2004;35(12):2843-7

    Article  PubMed  Google Scholar 

  58. Heiss WD, Kracht LW, Thiel A, Grond M, Pawlik G. Penumbral probability thresholds of cortical flumazenil binding and blood flow predicting tissue outcome in patients with cerebral ischaemia. Brain 2001;124(Pt 1):20-9

    Article  PubMed  Google Scholar 

  59. Markus R, Reutens DC, Kazui S, Read S, Wright P, Chambers BR, et al. Topography and temporal evolution of hypoxic viable tissue identified by 18F-fluoromisonidazole positron emission tomography in humans after ischemic stroke. Stroke 2003;34(11):2646-52

    Article  PubMed  Google Scholar 

  60. Hjort N, Butcher K, Davis SM, Kidwell CS, Koroshetz WJ, Rother J, et al. Magnetic resonance imaging criteria for thrombolysis in acute cerebral infarct. Stroke 2005;36(2):388-97

    Article  PubMed  Google Scholar 

  61. Linnik MD, Zahos P, Geschwind MD, Federoff HJ. Expression of bcl-2 from a defective herpes simplex virus-1 vector limits neuronal death in focal cerebral ischemia. Stroke 1995;26(9):1670-4

    PubMed  Google Scholar 

  62. Betz AL, Yang GY, Davidson BL. Attenuation of stroke size in rats using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist in brain. J Cereb Blood Flow Metab 1995;15(4):547-51

    PubMed  Google Scholar 

  63. Xu DG, Crocker SJ, Doucet JP, St-Jean M, Tamai K, Hakim AM, et al. Elevation of neuronal expression of NAIP reduces ischemic damage in the rat hippocampus. Nat Med 1997;3(9):997-1004

    Article  PubMed  Google Scholar 

  64. Yang GY, Pang L, Ge HL, Tan M, Ye W, Liu XH, et al. Attenuation of ischemia-induced mouse brain injury by SAG, a redox-inducible antioxidant protein. J Cereb Blood Flow Metab 2001;21(6):722-33

    Article  PubMed  Google Scholar 

  65. Zhang WR, Sato K, Iwai M, Nagano I, Manabe Y, Abe K. Therapeutic time window of adenovirus-mediated GDNF gene transfer after transient middle cerebral artery occlusion in rat. Brain Res 2002;947(1):140-5

    Article  PubMed  Google Scholar 

  66. Takada J, Ooboshi H, Ago T, Kitazono T, Yao H, Kadomatsu K, et al. Postischemic gene transfer of midkine, a neurotrophic factor, protects against focal brain ischemia. Gene Ther 2005;12(6):487-93

    Article  PubMed  Google Scholar 

  67. Kitagawa K, Hori M, Matsumoto M. Therapeutic strategy for acute stroke-prologue for an epoch of brain attack. Future aspects of gene therapy in acute ischemic stroke. Intern Med 2005;44(4):371-4

    Article  PubMed  Google Scholar 

  68. Biffi A, De PM, Quattrini A, Del CU, Amadio S, Visigalli I, et al. Correction of metachromatic leukodystrophy in the mouse model by transplantation of genetically modified hematopoietic stem cells. J Clin Invest 2004;113(8):1118-29

    Article  PubMed  Google Scholar 

  69. Schouten JW, Fulp CT, Royo NC, Saatman KE, Watson DJ, Snyder EY, et al. A review and rationale for the use of cellular transplantation as a therapeutic strategy for traumatic brain injury. J Neurotrauma 2004;21(11):1501-38

    Article  PubMed  Google Scholar 

  70. Snyder EY, Park KI, Flax JD, Liu S, Rosario CM, Yandava BD, et al. Potential of neural “stem-like” cells for gene therapy and repair of the degenerating central nervous system. Adv Neurol 1997;72:121-32

    PubMed  Google Scholar 

  71. Snyder EY, Daley GQ, Goodell M. Taking stock and planning for the next decade: realistic prospects for stem cell therapies for the nervous system. J Neurosci Res 2004;76(2):157-68

    Article  PubMed  Google Scholar 

  72. Freed CR, Greene PE, Breeze RE, Tsai WY, DuMouchel W, Kao R, et al. Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 2001 Mar 8;344(10):710-9

    Article  PubMed  Google Scholar 

  73. Snyder BJ, Olanow CW. Stem cell treatment for Parkinson’s disease: an update for 2005. Curr Opin Neurol 2005;18(4):376-85

    Article  PubMed  Google Scholar 

  74. Behrstock S, Svendsen CN. Combining growth factors, stem cells, and gene therapy for the aging brain. Ann N Y Acad Sci 2004;1019:5-14

    Article  PubMed  Google Scholar 

  75. McKay RD. Stem cell biology and neurodegenerative disease. Philos Trans R Soc Lond B Biol Sci 2004;359(1445):851-6

    Article  PubMed  Google Scholar 

  76. De Lacoste MC, White CL III. The role of cortical connectivity in Alzheimer’s disease pathogenesis: a review and model system. Neurobiol Aging 1993;14(1):1-16

    Article  PubMed  Google Scholar 

  77. Laws SM, Hone E, Gandy S, Martins RN. Expanding the association between the APOE gene and the risk of Alzheimer’s disease: possible roles for APOE promoter polymorphisms and alterations in APOE transcription. J Neurochem 2003;84(6):1215-36

    Article  PubMed  Google Scholar 

  78. Kilgard MP, Merzenich MM. Cortical map reorganization enabled by nucleus basalis activity. Science 1998;279(5357):1714-8

    Article  PubMed  Google Scholar 

  79. Conner JM, Culberson A, Packowski C, Chiba AA, Tuszynski MH. Lesions of the basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 2003;38(5):819-29

    Article  PubMed  Google Scholar 

  80. Press GA, Amaral DG, Squire LR. Hippocampal abnormalities in amnesic patients revealed by high-resolution magnetic resonance imaging. Nature 1989;341(6237):54-7

    Article  PubMed  Google Scholar 

  81. Bobinski M, de Leon MJ, Wegiel J, Desanti S, Convit A, Saint Louis LA, et al. The histological validation of post mortem magnetic resonance imaging-determined hippocampal volume in Alzheimer’s disease. Neuroscience 2000;95(3):721-5

    Article  PubMed  Google Scholar 

  82. Jack CR Jr, Dickson DW, Parisi JE, Xu YC, Cha RH, O’Brien PC, et al. Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 2002;58(5):750-7

    PubMed  Google Scholar 

  83. Mosconi L, De SS, Rusinek H, Convit A, de Leon MJ. Magnetic resonance and PET studies in the early diagnosis of Alzheimer’s disease. Expert Rev Neurother 2004;4(5):831-49

    Article  PubMed  Google Scholar 

  84. Jack CR Jr, Petersen RC, Xu YC, O’Brien PC, Smith GE, Ivnik RJ, et al. Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology 1999 Apr 22;52(7):1397-1403

    PubMed  Google Scholar 

  85. Herholz K. PET studies in dementia. Ann Nucl Med 2003;17(2):79-89

    PubMed  Google Scholar 

  86. Rocher AB, Chapon F, Blaizot X, Baron JC, Chavoix C. Resting-state brain glucose utilization as measured by PET is directly related to regional synaptophysin levels: a study in baboons. Neuroimage 2003;20(3):1894-8

    Article  PubMed  Google Scholar 

  87. Friedland RP, Brun A, Budinger TF. Pathological and positron emission tomographic correlations in Alzheimer’s disease. Lancet 1985 26;1(8422):228

    Article  Google Scholar 

  88. Minoshima S, Giordani B, Berent S, Frey KA, Foster NL, Kuhl DE. Metabolic reduction in the posterior cingulate cortex in very early Alzheimer’s disease. Ann Neurol 1997;42(1):85-94

    Article  PubMed  Google Scholar 

  89. Herholz K, Salmon E, Perani D, Baron JC, Holthoff V, Frolich L, et al. Discrimination between Alzheimer dementia and controls by automated analysis of multicenter FDG PET. Neuroimage 2002;17(1):302-16

    Article  PubMed  Google Scholar 

  90. Nestor PJ, Fryer TD, Smielewski P, Hodges JR. Limbic hypometabolism in Alzheimer’s disease and mild cognitive impairment. Ann Neurol 2003;54(3):343-51

    Article  PubMed  Google Scholar 

  91. Heiss WD, Habedank B, Klein JC, Herholz K, Wienhard K, Lenox M, et al. Metabolic rates in small brain nuclei determined by high-resolution PET. J Nucl Med 2004;45(11):1811-5

    PubMed  Google Scholar 

  92. Reiman EM, Caselli RJ, Chen K, Alexander GE, Bandy D, Frost J. Declining brain activity in cognitively normal apolipoprotein E epsilon 4 heterozygotes: A foundation for using positron emission tomography to efficiently test treatments to prevent Alzheimer’s disease. Proc Natl Acad Sci U S A 2001;98(6):3334-9

    Article  PubMed  Google Scholar 

  93. Mosconi L, Perani D, Sorbi S, Herholz K, Nacmias B, Holthoff V, et al. MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology 2004;63(12):2332-40

    PubMed  Google Scholar 

  94. Mosconi L. Brain glucose metabolism in the early and specific diagnosis of Alzheimer’s disease. FDG-PET studies in MCI and AD. Eur J Nucl Med Mol Imaging 2005;32(4):486-510

    Article  PubMed  Google Scholar 

  95. Chetelat G, Desgranges B, de lS, V, Viader F, Eustache F, Baron JC. Mild cognitive impairment: Can FDG-PET predict who is to rapidly convert to Alzheimer’s disease? Neurology 2003;60(8):1374-7

    PubMed  Google Scholar 

  96. Thomas A, Klein JC, Galldiks N, Grond M, Jacobs AH. Multitracer PET imaging in Heidenhain variant of Creutzfeldt-Jakob disease. J Neurol 2005;Aug 4[Epub ahead of print]

  97. Mesulam MM, Mufson EJ, Levey AI, Wainer BH. Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 1983 20;214(2):170-97

    Article  PubMed  Google Scholar 

  98. Iyo M, Namba H, Fukushi K, Shinotoh H, Nagatsuka S, Suhara T, et al. Measurement of acetylcholinesterase by positron emission tomography in the brains of healthy controls and patients with Alzheimer’s disease. Lancet 1997;349(9068):1805-9

    Article  PubMed  Google Scholar 

  99. Bohnen NI, Kaufer DI, Ivanco LS, Lopresti B, Koeppe RA, Davis JG, et al. Cortical cholinergic function is more severely affected in parkinsonian dementia than in Alzheimer disease: an in vivo positron emission tomographic study. Arch Neurol 2003;60(12):1745-8

    Article  PubMed  Google Scholar 

  100. Bohnen NI, Kaufer DI, Hendrickson R, Ivanco LS, Lopresti B, Davis JG, et al. Cognitive correlates of alterations in acetylcholinesterase in Alzheimer’s disease. Neurosci Lett 2005;380(1-2):127-32

    Article  PubMed  Google Scholar 

  101. Herholz K, Weisenbach S, Zundorf G, Lenz O, Schroder H, Bauer B, et al. In vivo study of acetylcholine esterase in basal forebrain, amygdala, and cortex in mild to moderate Alzheimer disease. Neuroimage 2004;21(1):136-43

    Article  PubMed  Google Scholar 

  102. Bacskai BJ, Kajdasz ST, Christie RH, Carter C, Games D, Seubert P, et al. Imaging of amyloid-beta deposits in brains of living mice permits direct observation of clearance of plaques with immunotherapy. Nat Med 2001;7(3):369-72

    Article  PubMed  Google Scholar 

  103. Bacskai BJ, Klunk WE, Mathis CA, Hyman BT. Imaging amyloid-beta deposits in vivo. J Cereb Blood Flow Metab 2002;22(9):1035-41

    Article  PubMed  Google Scholar 

  104. Klunk WE, Engler H, Nordberg A, Wang Y, Blomqvist G, Holt DP, et al. Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound-B. Ann Neurol 2004;55(3):306-19

    Article  PubMed  Google Scholar 

  105. Mathis CA, Bacskai BJ, Kajdasz ST, McLellan ME, Frosch MP, Hyman BT, et al. A lipophilic thioflavin-T derivative for positron emission tomography (PET) imaging of amyloid in brain. Bioorg Med Chem Lett 2002;12(3):295-8

    Article  PubMed  Google Scholar 

  106. Price JC, Klunk WE, Lopresti BJ, Lu X, Hoge JA, Ziolko SK, et al. Kinetic modeling of amyloid binding in humans using PET imaging and Pittsburgh Compound-B. J Cereb Blood Flow Metab 2005;Jun 8 [Epub ahead of print]

  107. Bacskai BJ, Hickey GA, Skoch J, Kajdasz ST, Wang Y, Huang GF, et al. Four-dimensional multiphoton imaging of brain entry, amyloid binding, and clearance of an amyloid-beta ligand in transgenic mice. Proc Natl Acad Sci U S A 2003;100(21):12462-7

    Article  PubMed  Google Scholar 

  108. Agdeppa ED, Kepe V, Liu J, Flores-Torres S, Satyamurthy N, Petric A, et al. Binding characteristics of radiofluorinated 6-dialkylamino-2-naphthylethylidene derivatives as positron emission tomography imaging probes for beta-amyloid plaques in Alzheimer’s disease. J Neurosci 2001;21(24):RC189

    PubMed  Google Scholar 

  109. Shoghi-Jadid K, Small GW, Agdeppa ED, Kepe V, Ercoli LM, Siddarth P, et al. Localization of neurofibrillary tangles and beta-amyloid plaques in the brains of living patients with Alzheimer disease. Am J Geriatr Psychiatry 2002;10(1):24-35

    Article  PubMed  Google Scholar 

  110. Cagnin A, Brooks DJ, Kennedy AM, Gunn RN, Myers R, Turkheimer FE, et al. In-vivo measurement of activated microglia in dementia. Lancet 2001;358(9280):461-7

    Article  PubMed  Google Scholar 

  111. Nordberg A. PET imaging of amyloid in Alzheimer’s disease. Lancet Neurol 2004;3(9):519-27

    Article  PubMed  Google Scholar 

  112. Levi-Montalcini R. The nerve growth factor 35 years later. Science 1987;237(4819):1154-62

    PubMed  Google Scholar 

  113. Hefti F. Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transections. J Neurosci 1986;6(8):2155-62

    PubMed  Google Scholar 

  114. Fischer W, Wictorin K, Bjorklund A, Williams LR, Varon S, Gage FH. Amelioration of cholinergic neuron atrophy and spatial memory impairment in aged rats by nerve growth factor. Nature 1987;329(6134):65-8

    Article  PubMed  Google Scholar 

  115. Rosenberg MB, Friedmann T, Robertson RC, Tuszynski M, Wolff JA, Breakefield XO, et al. Grafting genetically modified cells to the damaged brain: restorative effects of NGF expression. Science 1988;242(4885):1575-8

    PubMed  Google Scholar 

  116. Tuszynski MH, HS U, Amaral DG, Gage FH. Nerve growth factor infusion in the primate brain reduces lesion-induced cholinergic neuronal degeneration. J Neurosci 1990;10(11):3604-4

    PubMed  Google Scholar 

  117. Eriksdotter JM, Nordberg A, Amberla K, Backman L, Ebendal T, Meyerson B, et al. Intracerebroventricular infusion of nerve growth factor in three patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 1998;9(5):246-57

    Article  PubMed  Google Scholar 

  118. Tuszynski MH, Roberts J, Senut MC, HS U, Gage FH. Gene therapy in the adult primate brain: intraparenchymal grafts of cells genetically modified to produce nerve growth factor prevent cholinergic neuronal degeneration. Gene Ther 1996;3(4):305-14

    PubMed  Google Scholar 

  119. Smith DE, Roberts J, Gage FH, Tuszynski MH. Age-associated neuronal atrophy occurs in the primate brain and is reversible by growth factor gene therapy. Proc Natl Acad Sci U S A 1999;96(19):10893-8

    Article  PubMed  Google Scholar 

  120. Conner JM, Darracq MA, Roberts J, Tuszynski MH. Nontropic actions of neurotrophins: subcortical nerve growth factor gene delivery reverses age-related degeneration of primate cortical cholinergic innervation. Proc Natl Acad Sci U S A 2001 13;98(4):1941-6

    Article  PubMed  Google Scholar 

  121. Tuszynski MH, Thal L, Pay M, Salmon DP, U HS, Bakay R, et al. A phase 1 clinical trial of nerve growth factor gene therapy for Alzheimer disease. Nat Med 2005;11(5):551-5

    Article  PubMed  Google Scholar 

  122. Dodart JC, Marr RA, Koistinaho M, Gregersen BM, Malkani S, Verma IM, et al. Gene delivery of human apolipoprotein E alters brain Abeta burden in a mouse model of Alzheimer’s disease. Proc Natl Acad Sci U S A 2005;102(4):1211-6

    Article  PubMed  Google Scholar 

  123. Qu B, Rosenberg RN, Li L, Boyer PJ, Johnston SA. Gene vaccination to bias the immune response to amyloid-beta peptide as therapy for Alzheimer disease. Arch Neurol 2004;61(12):1859-64

    Article  PubMed  Google Scholar 

  124. Kim HD, Kong FK, Cao Y, Lewis TL, Kim H, Tang DC, et al. Immunization of Alzheimer model mice with adenovirus vectors encoding amyloid beta-protein and GM-CSF reduces amyloid load in the brain. Neurosci Lett 2004;370(2-3):218-23

    Article  PubMed  Google Scholar 

  125. Hock C, Konietzko U, Papassotiropoulos A, Wollmer A, Streffer J, von Rotz RC, et al. Generation of antibodies specific for beta-amyloid by vaccination of patients with Alzheimer disease. Nat Med 2002;8(11):1270-5

    Article  PubMed  Google Scholar 

  126. Hock C, Konietzko U, Streffer JR, Tracy J, Signorell A, Muller-Tillmanns B, et al. Antibodies against beta-amyloid slow cognitive decline in Alzheimer’s disease. Neuron 2003;38(4):547-54

    Article  PubMed  Google Scholar 

  127. Marr RA, Guan H, Rockenstein E, Kindy M, Gage FH, Verma I, et al. Neprilysin regulates amyloid beta peptide levels. J Mol Neurosci 2004;22(1-2):5-11

    Article  PubMed  Google Scholar 

  128. Marr RA, Rockenstein E, Mukherjee A, Kindy MS, Hersh LB, Gage FH, et al. Neprilysin gene transfer reduces human amyloid pathology in transgenic mice. J Neurosci 2003;23(6):1992-6

    PubMed  Google Scholar 

  129. Kaspar BK, Llado J, Sherkat N, Rothstein JD, Gage FH. Retrograde viral delivery of IGF-1 prolongs survival in a mouse ALS model. Science 2003;301(5634):839-42

    Article  PubMed  Google Scholar 

  130. Miller VM, Xia H, Marrs GL, Gouvion CM, Lee G, Davidson BL, et al. Allele-specific silencing of dominant disease genes. Proc Natl Acad Sci U S A 2003;100(12):7195-200

    Article  PubMed  Google Scholar 

  131. Polymeropoulos MH, Higgins JJ, Golbe LI, Johnson WG, Ide SE, Di Iorio G, et al. Mapping of a gene for Parkinson’s disease to chromosome 4q21-q23 [see comments]. Science 1996;274(5290):1197-9

    Article  PubMed  Google Scholar 

  132. Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998;392(6676):605-8

    Article  PubMed  Google Scholar 

  133. Imai Y, Soda M, Inoue H, Hattori N, Mizuno Y, Takahashi R. An unfolded putative transmembrane polypeptide, which can lead to endoplasmic reticulum stress, is a substrate of Parkin. Cell 2001;105(7):891-902

    Article  PubMed  Google Scholar 

  134. Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson’s disease. Science 2003;302(5646):819-22

    Article  PubMed  Google Scholar 

  135. Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003;39(6):889-909

    Article  PubMed  Google Scholar 

  136. Hutchinson M, Raff U, Lebedev S. MRI correlates of pathology in parkinsonism: segmented inversion recovery ratio imaging (SIRRIM). Neuroimage 2003;20(3):1899-1902

    Article  PubMed  Google Scholar 

  137. Walter U, Niehaus L, Probst T, Benecke R, Meyer BU, Dressler D. Brain parenchyma sonography discriminates Parkinson’s disease and atypical parkinsonian syndromes. Neurology 2003 14;60(1):74-7

    Article  PubMed  Google Scholar 

  138. Schulz JB, Skalej M, Wedekind D, Luft AR, Abele M, Voigt K, et al. Magnetic resonance imaging-based volumetry differentiates idiopathic Parkinson’s syndrome from multiple system atrophy and progressive supranuclear palsy. Ann Neurol 1999;45(1):65-74

    Article  PubMed  Google Scholar 

  139. Seppi K, Schocke MF, Esterhammer R, Kremser C, Brenneis C, Mueller J, et al. Diffusion-weighted imaging discriminates progressive supranuclear palsy from PD, but not from the parkinson variant of multiple system atrophy. Neurology 2003;60(6):922-7

    PubMed  Google Scholar 

  140. Morrish PK, Sawle GV, Brooks DJ. Clinical and [18F]dopa PET findings in early Parkinson’s disease. J Neurol Neurosurg Psychiatry 1995;59(6):597-600

    PubMed  Google Scholar 

  141. Rinne JO, Bergman J, Ruottinen H, Haaparanta M, Eronen E, Oikonen V, et al. Striatal uptake of a novel PET ligand, [18F]beta-CFT, is reduced in early Parkinson’s disease. Synapse 1999;31(2):119-24

    Article  PubMed  Google Scholar 

  142. Benamer HT, Patterson J, Wyper DJ, Hadley DM, Macphee GJ, Grosset DG. Correlation of Parkinson’s disease severity and duration with 123I-FP-CIT SPECT striatal uptake. Mov Disord 2000;15(4):692-8

    Article  PubMed  Google Scholar 

  143. Fischman AJ, Bonab AA, Babich JW, Livni E, Alpert NM, Meltzer PC, et al. [11C, 127I]Altropane: a highly selective ligand for PET imaging of dopamine transporter sites. Synapse 2001;39(4):332-42

    Article  PubMed  Google Scholar 

  144. Lee CS, Samii A, Sossi V, Ruth TJ, Schulzer M, Holden JE, et al. In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 2000;47(4):493-503

    Article  PubMed  Google Scholar 

  145. Doder M, Rabiner EA, Turjanski N, Lees AJ, Brooks DJ. Tremor in Parkinson’s disease and serotonergic dysfunction: an 11C-WAY 100635 PET study. Neurology 2003;60(4):601-5

    PubMed  Google Scholar 

  146. Gerhard A, Banati RB, Goerres GB, Cagnin A, Myers R, Gunn RN, et al. [11C](R)-PK11195 PET imaging of microglial activation in multiple system atrophy. Neurology 2003;61(5):686-9

    PubMed  Google Scholar 

  147. Hilker R, Klein C, Ghaemi M, Kis B, Strotmann T, Ozelius LJ, et al. Positron emission tomographic analysis of the nigrostriatal dopaminergic system in familial parkinsonism associated with mutations in the parkin gene. Ann Neurol 2001;49(3):367-76

    Article  PubMed  Google Scholar 

  148. Piccini P, Burn DJ, Ceravolo R, Maraganore D, Brooks DJ. The role of inheritance in sporadic Parkinson’s disease: evidence from a longitudinal study of dopaminergic function in twins. Ann Neurol 1999;45(5):577-82

    Article  PubMed  Google Scholar 

  149. Nurmi E, Ruottinen HM, Bergman J, Haaparanta M, Solin O, Sonninen P, et al. Rate of progression in Parkinson’s disease: a 6-[18F]fluoro-l-dopa PET study. Mov Disord 2001;16(4):608-15

    Article  PubMed  Google Scholar 

  150. Hilker R, Schweitzer K, Coburger S, Ghaemi M, Weisenbach S, Jacobs AH, et al. Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity. Arch Neurol 2005;62(3):378-82

    Article  PubMed  Google Scholar 

  151. Whone AL, Watts RL, Stoessl AJ, Davis M, Reske S, Nahmias C, et al. Slower progression of Parkinson’s disease with ropinirole versus levodopa: The REAL-PET study. Ann Neurol 2003;54(1):93-101

    Article  PubMed  Google Scholar 

  152. Parkinson Study Group. Dopamine transporter brain imaging to assess the effects of pramipexole vs levodopa on Parkinson disease progression. JAMA 2002;287(13):1653-61

    Google Scholar 

  153. Hilker R, Voges J, Ghaemi M, Lehrke R, Rudolf J, Koulousakis A, et al. Deep brain stimulation of the subthalamic nucleus does not increase the striatal dopamine concentration in parkinsonian humans. Mov Disord 2003;18(1):41-8

    Article  PubMed  Google Scholar 

  154. Hilker R, Voges J, Weisenbach S, Kalbe E, Burghaus L, Ghaemi M, et al. Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab 2004;24(1):7-16

    Article  PubMed  Google Scholar 

  155. Ravina B, Eidelberg D, Ahlskog JE, Albin RL, Brooks DJ, Carbon M, et al. The role of radiotracer imaging in Parkinson disease. Neurology 2005 25;64(2):208-15

    PubMed  Google Scholar 

  156. Brooks DJ. Neuroimaging in Parkinson’s disease. NeuroRx 2004;1(2):243-54

    Article  PubMed  Google Scholar 

  157. During MJ, Naegele JR, O’Malley KL, Geller AI. Long-term behavioral recovery in parkinsonian rats by an HSV vector expressing tyrosine hydroxylase [see comments]. Science 1994;266(5189):1399-403

    PubMed  Google Scholar 

  158. Kaplitt MG, Leone P, Samulski RJ, Xiao X, Pfaff DW, O’Malley KL, et al. Long-term gene expression and phenotypic correction using adeno-associated virus vectors in the mammalian brain. Nat Genet 1994;8(2):148-54

    Article  PubMed  Google Scholar 

  159. Mandel RJ, Rendahl KG, Spratt SK, Snyder RO, Cohen LK, Leff SE. Characterization of intrastriatal recombinant adeno-associated virus-mediated gene transfer of human tyrosine hydroxylase and human GTP-cyclohydrolase I in a rat model of Parkinson’s disease. J Neurosci 1998;18(11):4271-84

    PubMed  Google Scholar 

  160. Kirik D, Georgievska B, Burger C, Winkler C, Muzyczka N, Mandel RJ, et al. Reversal of motor impairments in parkinsonian rats by continuous intrastriatal delivery of l-dopa using rAAV-mediated gene transfer. Proc Natl Acad Sci U S A 2002;99(7):4708-13

    Article  PubMed  Google Scholar 

  161. Shen Y, Muramatsu SI, Ikeguchi K, Fujimoto KI, Fan DS, Ogawa M, et al. Triple transduction with adeno-associated virus vectors expressing tyrosine hydroxylase, aromatic-l-amino-acid decarboxylase, and GTP cyclohydrolase I for gene therapy of Parkinson’s disease. Hum Gene Ther 2000;11(11):1509-19

    Article  PubMed  Google Scholar 

  162. Azzouz M, Martin-Rendon E, Barber RD, Mitrophanous KA, Carter EE, Rohll JB, et al. Multicistronic lentiviral vector-mediated striatal gene transfer of aromatic l-amino acid decarboxylase, tyrosine hydroxylase, and GTP cyclohydrolase I induces sustained transgene expression, dopamine production, and functional improvement in a rat model of Parkinson’s disease. J Neurosci 2002;22(23):10302-12

    PubMed  Google Scholar 

  163. Muramatsu S, Fujimoto K, Ikeguchi K, Shizuma N, Kawasaki K, Ono F, et al. Behavioral recovery in a primate model of Parkinson’s disease by triple transduction of striatal cells with adeno-associated viral vectors expressing dopamine-synthesizing enzymes. Hum Gene Ther 2002;13(3):345-54

    Article  PubMed  Google Scholar 

  164. Sun M, Kong L, Wang X, Holmes C, Gao Q, Zhang GR, et al. Coexpression of tyrosine hydroxylase, GTP cyclohydrolase I, aromatic amino acid decarboxylase, and vesicular monoamine transporter 2 from a helper virus-free herpes simplex virus type 1 vector supports high-level, long-term biochemical and behavioral correction of a rat model of Parkinson’s disease. Hum Gene Ther 2004;15(12):1177-96

    Article  PubMed  Google Scholar 

  165. Lin LF, Doherty DH, Lile JD, Bektesh S, Collins F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 1993;260(5111):1130-2

    PubMed  Google Scholar 

  166. Hyman C, Hofer M, Barde YA, Juhasz M, Yancopoulos GD, Squinto SP, et al. BDNF is a neurotrophic factor for dopaminergic neurons of the substantia nigra. Nature 1991;350(6315):230-2

    Article  PubMed  Google Scholar 

  167. Bjorklund A, Kirik D, Rosenblad C, Georgievska B, Lundberg C, Mandel RJ. Towards a neuroprotective gene therapy for Parkinson’s disease: use of adenovirus, AAV and lentivirus vectors for gene transfer of GDNF to the nigrostriatal system in the rat Parkinson model. Brain Res 2000;886(1-2):82-98

    Article  PubMed  Google Scholar 

  168. Choi-Lundberg DL, Lin Q, Chang YN, Chiang YL, Hay CM, Mohajeri H, et al. Dopaminergic neurons protected from degeneration by GDNF gene therapy. Science 1997;275(5301):838-41

    Article  PubMed  Google Scholar 

  169. Kirik D, Rosenblad C, Bjorklund A, Mandel RJ. Long-term rAAV-mediated gene transfer of GDNF in the rat Parkinson’s model: intrastriatal but not intranigral transduction promotes functional regeneration in the lesioned nigrostriatal system. J Neurosci 2000;20(12):4686-700

    PubMed  Google Scholar 

  170. Kordower JH, Emborg ME, Bloch J, Ma SY, Chu Y, Leventhal L, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson’s disease. Science 2000;290(5492):767-73

    Article  PubMed  Google Scholar 

  171. Kordower JH. In vivo gene delivery of glial cell line-derived neurotrophic factor for Parkinson’s disease. Ann Neurol 2003;53 Suppl 3:S120-32

    Article  PubMed  Google Scholar 

  172. Rosenblad C, Georgievska B, Kirik D. Long-term striatal overexpression of GDNF selectively downregulates tyrosine hydroxylase in the intact nigrostriatal dopamine system. Eur J Neurosci 2003;17(2):260-70

    Article  PubMed  Google Scholar 

  173. Georgievska B, Kirik D, Bjorklund A. Overexpression of glial cell line-derived neurotrophic factor using a lentiviral vector induces time- and dose-dependent downregulation of tyrosine hydroxylase in the intact nigrostriatal dopamine system. J Neurosci 2004;24(29):6437-45

    Article  PubMed  Google Scholar 

  174. Georgievska B, Jakobsson J, Persson E, Ericson C, Kirik D, Lundberg C. Regulated delivery of glial cell line-derived neurotrophic factor into rat striatum, using a tetracycline-dependent lentiviral vector. Hum Gene Ther 2004;15(10):934-44

    Article  PubMed  Google Scholar 

  175. Hurtado-Lorenzo A, Millan E, Gonzalez-Nicolini V, Suwelack D, Castro MG, Lowenstein PR. Differentiation and transcription factor gene therapy in experimental Parkinson’s disease: sonic hedgehog and Gli-1, but not Nurr-1, protect nigrostriatal cell bodies from 6-OHDA-induced neurodegeneration. Mol Ther 2004;10(3):507-24

    Article  PubMed  Google Scholar 

  176. Xia XG, Harding T, Weller M, Bieneman A, Uney JB, Schulz JB. Gene transfer of the JNK interacting protein-1 protects dopaminergic neurons in the MPTP model of Parkinson’s disease. Proc Natl Acad Sci U S A 2001;98(18):10433-8

    Article  PubMed  Google Scholar 

  177. Mochizuki H, Hayakawa H, Migita M, Shibata M, Tanaka R, Suzuki A, et al. An AAV-derived Apaf-1 dominant negative inhibitor prevents MPTP toxicity as antiapoptotic gene therapy for Parkinson’s disease. Proc Natl Acad Sci U S A 2001;98(19):10918-23

    Article  PubMed  Google Scholar 

  178. Crocker SJ, Wigle N, Liston P, Thompson CS, Lee CJ, Xu D, et al. NAIP protects the nigrostriatal dopamine pathway in an intrastriatal 6-OHDA rat model of Parkinson’s disease. Eur J Neurosci 2001;14(2):391-400

    Article  PubMed  Google Scholar 

  179. Dong Z, Wolfer DP, Lipp HP, Bueler H. Hsp70 gene transfer by adeno-associated virus inhibits MPTP-induced nigrostriatal degeneration in the mouse model of Parkinson disease. Mol Ther 2005;11(1):80-8

    Article  PubMed  Google Scholar 

  180. Lo BC, Schneider BL, Bauer M, Sajadi A, Brice A, Iwatsubo T, et al. Lentiviral vector delivery of parkin prevents dopaminergic degeneration in an alpha-synuclein rat model of Parkinson’s disease. Proc Natl Acad Sci U S A 2004;101(50):17510-5

    Article  PubMed  Google Scholar 

  181. Yamada M, Mizuno Y, Mochizuki H. Parkin gene therapy for alpha-synucleinopathy: a rat model of Parkinson’s disease. Hum Gene Ther 2005;16(2):262-70

    Article  PubMed  Google Scholar 

  182. Burton EA, Glorioso JC, Fink DJ. Gene therapy progress and prospects: Parkinson’s disease. Gene Ther 2003;10(20):1721-7

    Article  PubMed  Google Scholar 

  183. Luo J, Kaplitt MG, Fitzsimons HL, Zuzga DS, Liu Y, Oshinsky ML, et al. Subthalamic GAD gene therapy in a Parkinson’s disease rat model. Science 2002;298(5592):425-9

    Article  PubMed  Google Scholar 

  184. During MJ, Kaplitt MG, Stern MB, Eidelberg D. Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation. Hum Gene Ther 2001;12(12):1589-91

    PubMed  Google Scholar 

  185. Fjord-Larsen L, Johansen JL, Kusk P, Tornoe J, Gronborg M, Rosenblad C, et al. Efficient in vivo protection of nigral dopaminergic neurons by lentiviral gene transfer of a modified Neurturin construct. Exp Neurol 2005;195(1):49-60

    Article  PubMed  Google Scholar 

  186. Bankiewicz KS, Eberling JL, Kohutnicka M, Jagust W, Pivirotto P, Bringas J, et al. Convection-enhanced delivery of AAV vector in parkinsonian monkeys; in vivo detection of gene expression and restoration of dopaminergic function using pro-drug approach. Exp Neurol 2000;164(1):2-14

    Article  PubMed  Google Scholar 

  187. Kleihues P, Louis DN, Scheithauer BW, Rorke LB, Reifenberger G, Burger PC, et al. The WHO classification of tumors of the nervous system. J Neuropathol Exp Neurol 2002;61(3):215-25

    PubMed  Google Scholar 

  188. Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR, et al. Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 1998;90(19):1473-9

    Article  PubMed  Google Scholar 

  189. Jacobs AH, Kracht LW, Gossmann A, Ruger MA, Thomas AV, Thiel A, et al. Imaging in neurooncology. NeuroRx 2005;2(2):333-47

    Article  PubMed  Google Scholar 

  190. Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM. In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 1992;256(5063):1550-2

    PubMed  Google Scholar 

  191. Klatzmann D, Valery CA, Bensimon G, Marro B, Boyer O, Mokhtari K, et al. A phase I/II study of herpes simplex virus type 1 thymidine kinase “suicide” gene therapy for recurrent glioblastoma. Study Group on Gene Therapy for Glioblastoma. Hum Gene Ther 1998;9(17):2595-604

    Article  PubMed  Google Scholar 

  192. Rainov NG. A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 2000;11(17):2389-401

    Article  PubMed  Google Scholar 

  193. Ram Z, Culver KW, Oshiro EM, Viola JJ, DeVroom HL, Otto E, et al. Therapy of malignant brain tumors by intratumoral implantation of retroviral vector-producing cells. Nat Med 1997;3(12):1354-61

    Article  PubMed  Google Scholar 

  194. Jacobs AH, Voges J, Kracht LW, Dittmar C, Winkeler A, Thomas A, et al. Imaging in gene therapy of patients with glioma. J Neurooncol 2003;65(3):291-305

    Article  PubMed  Google Scholar 

  195. Lam PY, Breakefield XO. Potential of gene therapy for brain tumors. Hum Mol Genet 2001;10(7):777-87

    Article  PubMed  Google Scholar 

  196. Harrow S, Papanastassiou V, Harland J, Mabbs R, Petty R, Fraser M, et al. HSV1716 injection into the brain adjacent to tumour following surgical resection of high-grade glioma: safety data and long-term survival. Gene Ther 2004;11(22):1648-58

    Article  PubMed  Google Scholar 

  197. Papanastassiou V, Rampling R, Fraser M, Petty R, Hadley D, Nicoll J, et al. The potential for efficacy of the modified (ICP 34.5(-)) herpes simplex virus HSV1716 following intratumoural injection into human malignant glioma: a proof of principle study. Gene Ther 2002;9(6):398-406

    Article  PubMed  Google Scholar 

  198. Eck SL, Alavi JB, Judy K, Phillips P, Alavi A, Hackney D, et al. Treatment of recurrent or progressive malignant glioma with a recombinant adenovirus expressing human interferon-beta (H5.010CMVhIFN-beta): a phase I trial. Hum Gene Ther 2001;12(1):97-113

    Article  PubMed  Google Scholar 

  199. Yoshida J, Mizuno M, Fujii M, Kajita Y, Nakahara N, Hatano M, et al. Human gene therapy for malignant gliomas (glioblastoma multiforme and anaplastic astrocytoma) by in vivo transduction with human interferon beta gene using cationic liposomes. Hum Gene Ther 2004;15(1):77-86

    Article  PubMed  Google Scholar 

  200. Ali S, Curtin JF, Zirger JM, Xiong W, King GD, Barcia C, et al. Inflammatory and anti-glioma effects of an adenovirus expressing human soluble Fms-like tyrosine kinase 3 ligand (hsFlt3L): treatment with hsFlt3L inhibits intracranial glioma progression. Mol Ther 2004;10(6):1071-84

    Article  PubMed  Google Scholar 

  201. Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 2005;11(15):5515-25

    Article  PubMed  Google Scholar 

  202. Yu JS, Liu G, Ying H, Yong WH, Black KL, Wheeler CJ. Vaccination with tumor lysate-pulsed dendritic cells elicits antigen-specific, cytotoxic T-cells in patients with malignant glioma. Cancer Res 2004;64(14):4973-9

    Article  PubMed  Google Scholar 

  203. Herrlinger U, Woiciechowski C, Quiones A, Sena-Esteves M, Aboody K, Jacobs A, et al. Neural stem cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas. Mol Ther 2000;1(4):347-57

    Article  PubMed  Google Scholar 

  204. Aboody KS, Brown A, Rainov NG, Bower KA, Liu S, Yang W, et al. From the cover: neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas. Proc Natl Acad Sci U S A 2000;97(23):12846-51

    Article  PubMed  Google Scholar 

  205. Brown AB, Yang W, Schmidt NO, Carroll R, Leishear KK, Rainov NG, et al. Intravascular delivery of neural stem cell lines to target intracranial and extracranial tumors of neural and non-neural origin. Hum Gene Ther 2003;14(18):1777-85

    Article  PubMed  Google Scholar 

  206. Ehtesham M, Kabos P, Kabosova A, Neuman T, Black KL, Yu JS. The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma. Cancer Res 2002;62(20):5657-63

    PubMed  Google Scholar 

  207. Ehtesham M, Kabos P, Gutierrez MA, Chung NH, Griffith TS, Black KL, et al. Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand. Cancer Res 2002;62(24):7170-4

    PubMed  Google Scholar 

  208. Ehtesham M, Yuan X, Kabos P, Chung NH, Liu G, Akasaki Y, et al. Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4. Neoplasia 2004;6(3):287-93

    PubMed  Google Scholar 

  209. Shah K, Bureau E, Kim DE, Yang K, Tang Y, Weissleder R, et al. Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression. Ann Neurol 2005;57(1):34-41

    Article  PubMed  Google Scholar 

  210. Tang Y, Shah K, Messerli SM, Snyder E, Breakefield X, Weissleder R. In vivo tracking of neural progenitor cell migration to glioblastomas. Hum Gene Ther 2003;14(13):1247-54

    Article  PubMed  Google Scholar 

  211. Lowenstein PR. Immunology of viral-vector-mediated gene transfer into the brain: an evolutionary and developmental perspective. Trends Immunol 2002;23(1):23-30

    Article  PubMed  Google Scholar 

  212. Puumalainen AM, Vapalahti M, Agrawal RS, Kossila M, Laukkanen J, Lehtolainen P, et al. Beta-galactosidase gene transfer to human malignant glioma in vivo using replication-deficient retroviruses and adenoviruses. Hum Gene Ther 1998;9(12):1769-74

    PubMed  Google Scholar 

  213. Sandmair AM, Loimas S, Puranen P, Immonen A, Kossila M, Puranen M, et al. Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther 2000;11(16):2197-205

    Article  PubMed  Google Scholar 

  214. Jacobs AH, Dittmar C, Winkeler A, Garlip G, Heiss WD. Molecular imaging of gliomas. Mol Imaging 2002;1(4):309-35

    Article  PubMed  Google Scholar 

  215. Gambhir SS, Barrio JR, Wu L, Iyer M, Namavari M, Satyamurthy N, et al. Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 1998;39(11):2003-11

    PubMed  Google Scholar 

  216. Tjuvajev JG, Stockhammer G, Desai R, Uehara H, Watanabe K, Gansbacher B, et al. Imaging the expression of transfected genes in vivo. Cancer Res 1995;55(24):6126-32

    PubMed  Google Scholar 

  217. Tjuvajev JG, Avril N, Oku T, Sasajima T, Miyagawa T, Joshi R, et al. Imaging herpes virus thymidine kinase gene transfer and expression by positron emission tomography. Cancer Res 1998;58(19):4333-41

    PubMed  Google Scholar 

  218. MacLaren DC, Gambhir SS, Satyamurthy N, Barrio JR, Sharfstein S, Toyokuni T, et al. Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 1999;6(5):785-91

    Article  PubMed  Google Scholar 

  219. Weissleder R, Moore A, Mahmood U, Bhorade R, Benveniste H, Chiocca EA, et al. In vivo magnetic resonance imaging of transgene expression. Nat Med 2000;6(3):351-5

    Article  PubMed  Google Scholar 

  220. Blasberg RG, Tjuvajev JG. Molecular-Genetic Imaging: a nuclear medicine-based perspective. Mol Imaging 2002;1(2):280-300

    Article  PubMed  Google Scholar 

  221. de Vries E, Vaalburg W. Positron emission tomography: measurement of transgene expression. Methods 2002;27(3):234

    Article  PubMed  Google Scholar 

  222. Gambhir SS, Herschman HR, Cherry SR, Barrio JR, Satyamurthy N, Toyokuni T, et al. Imaging transgene expression with radionuclide technologies. Neoplasia 2000;2(1-2):118-38

    Article  PubMed  Google Scholar 

  223. Wiebe LI, Knaus EE. Enzyme-targeted, nucleoside-based radiopharmaceuticals for scintigraphic monitoring of gene transfer and expression. Curr Pharm Des 2001;7(18):1893-906

    Article  PubMed  Google Scholar 

  224. Voges J, Reszka R, Gossmann A, Dittmar C, Richter R, Garlip G, et al. Imaging-guided convection-enhanced delivery and gene therapy of glioblastoma. Ann Neurol 2003;54(4):479-87

    Article  PubMed  Google Scholar 

  225. Voges J, Weber F, Reszka R, Sturm V, Jacobs A, Heiss WD, et al. Clinical protocol. Liposomal gene therapy with the herpes simplex thymidine kinase gene/ganciclovir system for the treatment of glioblastoma multiforme. Hum Gene Ther 2002;13(5):675-85

    Article  PubMed  Google Scholar 

  226. Green LA, Nguyen K, Berenji B, Iyer M, Bauer E, Barrio JR, et al. A tracer kinetic model for 18F-FHBG for quantitating herpes simplex virus type 1 thymidine kinase reporter gene expression in living animals using PET. J Nucl Med 2004;45(9):1560-70

    PubMed  Google Scholar 

  227. Alauddin MM, Shahinian A, Park R, Tohme M, Fissekis JD, Conti PS. Synthesis and evaluation of 2’-deoxy-2’-18F-fluoro-5-fluoro-1-beta-d-arabinofuranosyluracil as a potential PET imaging agent for suicide gene expression. J Nucl Med 2004;45(12):2063-9

    PubMed  Google Scholar 

  228. Alauddin MM, Shahinian A, Gordon EM, Conti PS. Direct comparison of radiolabeled probes FMAU, FHBG, and FHPG as PET imaging agents for HSV1-tk expression in a human breast cancer model. Mol Imaging 2004;3(2):76-84

    Article  PubMed  Google Scholar 

  229. Kang KW, Min JJ, Chen X, Gambhir SS. Comparison of [14C]FMAU, [3H]FEAU, [14C]FIAU, and [3H]PCV for monitoring reporter gene expression of wild type and mutant herpes simplex virus type 1 thymidine kinase in cell culture. Mol Imaging Biol 2005;Jul 23 [Epub ahead of print]

  230. Choi SR, Zhuang ZP, Chacko AM, Acton PD, Tjuvajev-Gelovani J, Doubrovin M, et al. SPECT Imaging of Herpes simplex virus type1 thymidine kinase gene expression by [123I]FIAU(1). Acad Radiol 2005;12(7):798-805

    Article  PubMed  Google Scholar 

  231. Soghomonyan SA, Doubrovin M, Pike J, Luo X, Ittensohn M, Runyan JD, et al. Positron emission tomography (PET) imaging of tumor-localized Salmonella expressing HSV1-TK. Cancer Gene Ther 2005;12(1):101-8

    Article  PubMed  Google Scholar 

  232. Hackman T, Doubrovin M, Balatoni J, Beresten T, Ponomarev V, Beattie B, et al. Imaging expression of cytosine deaminase-herpes virus thymidine kinase fusion gene (CD/TK) expression with [124I]FIAU and PET. Mol Imaging 2002;1(1):36-42

    Article  PubMed  Google Scholar 

  233. Deng WP, Yang WK, Lai WF, Liu RS, Hwang JJ, Yang DM, et al. Non-invasive in vivo imaging with radiolabelled FIAU for monitoring cancer gene therapy using herpes simplex virus type 1 thymidine kinase and ganciclovir. Eur J Nucl Med Mol Imaging 2004;31(1):99-109

    Article  PubMed  Google Scholar 

  234. Yaghoubi SS, Barrio JR, Namavari M, Satyamurthy N, Phelps ME, Herschman HR, et al. Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther 2005;12(3):329-39

    Article  PubMed  Google Scholar 

  235. Wen B, Burgman P, Zanzonico P, O’donoghue J, Cai S, Finn R, et al. A preclinical model for noninvasive imaging of hypoxia-induced gene expression; comparison with an exogenous marker of tumor hypoxia. Eur J Nucl Med Mol Imaging 2004;31(11):1530-8

    Article  PubMed  Google Scholar 

  236. Serganova I, Doubrovin M, Vider J, Ponomarev V, Soghomonyan S, Beresten T, et al. Molecular imaging of temporal dynamics and spatial heterogeneity of hypoxia-inducible factor-1 signal transduction activity in tumors in living mice. Cancer Res 2004;64(17):6101-8

    Article  PubMed  Google Scholar 

  237. Sundaresan G, Paulmurugan R, Berger F, Stiles B, Nagayama Y, Wu H, et al. MicroPET imaging of Cre-loxP-mediated conditional activation of a herpes simplex virus type 1 thymidine kinase reporter gene. Gene Ther 2004;11(7):609-18

    Article  PubMed  Google Scholar 

  238. Jacobs A, Dubrovin M, Hewett J, Sena-Esteves M, Tan C, Slack M, et al. Functional co-expression of HSV-1 thymidine kinase and green fluorescent protein: implications for non-invasive imaging of transgene expression. Neoplasia 1999;1(2):154-61

    Article  PubMed  Google Scholar 

  239. Jacobs AH, Winkeler A, Hartung M, Slack M, Dittmar C, Kummer C, et al. Improved HSV-1 amplicon vectors for proportional coexpression of PET marker and therapeutic genes. Hum Gene Ther 2003;14:277-97

    Article  PubMed  Google Scholar 

  240. Kim YJ, Dubey P, Ray P, Gambhir SS, Witte ON. Multimodality imaging of lymphocytic migration using lentiviral-based transduction of a tri-fusion reporter gene. Mol Imaging Biol 2004;6(5):331-40

    Article  PubMed  Google Scholar 

  241. Ponomarev V, Doubrovin M, Serganova I, Vider J, Shavrin A, Beresten T, et al. A novel triple-modality reporter gene for whole-body fluorescent, bioluminescent, and nuclear noninvasive imaging. Eur J Nucl Med Mol Imaging 2004;31(5):740-51

    Article  PubMed  Google Scholar 

  242. Ray P, De A, Min JJ, Tsien RY, Gambhir SS. Imaging tri-fusion multimodality reporter gene expression in living subjects. Cancer Res 2004 15;64(4):1323-30

    Article  PubMed  Google Scholar 

  243. Liang Q, Satyamurthy N, Barrio JR, Toyokuni T, Phelps MP, Gambhir SS, et al. Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 2001;8(19):1490-8

    Article  PubMed  Google Scholar 

  244. Bracy JL, Sachs DH, Iacomini J. Inhibition of xenoreactive natural antibody production by retroviral gene therapy. Science 1998;281(5384):1845-7

    Article  PubMed  Google Scholar 

  245. Darrasse-Jeze G, Marodon G, Salomon BL, Catala M, Klatzmann D. Ontogeny of CD4+CD25+ regulatory/suppressor T cells in human fetuses. Blood 2005;105(12):4715-21

    Article  PubMed  Google Scholar 

  246. Forman D, Tian C, Iacomini J. Induction of donor-specific tolerance in sublethally irradiated recipients by gene therapy. Mol Ther 2005;12(2):353-9

    Article  PubMed  Google Scholar 

  247. Marodon G, Klatzmann D. In situ transduction of stromal cells and thymocytes upon intrathymic injection of lentiviral vectors. BMC Immunol 2004;5(1):18

    Article  PubMed  Google Scholar 

  248. Tian C, Bagley J, Cretin N, Seth N, Wucherpfennig KW, Iacomini J. Prevention of type 1 diabetes by gene therapy. J Clin Invest 2004;114(7):969-78

    Article  PubMed  Google Scholar 

  249. Freije WA, Castro-Vargas FE, Fang Z, Horvath S, Cloughesy T, Liau LM, et al. Gene expression profiling of gliomas strongly predicts survival. Cancer Res 2004;64(18):6503-10

    Article  PubMed  Google Scholar 

  250. Mehrian SR, Reichardt JK, Ya-Hsuan H, Kremen TJ, Liau LM, Cloughesy TF, et al. Robustness of gene expression profiling in glioma specimen samplings and derived cell lines. Brain Res Mol Brain Res 2005;136(1-2):99-103

    Article  PubMed  Google Scholar 

  251. Mischel PS, Cloughesy TF, Nelson SF. DNA-microarray analysis of brain cancer: molecular classification for therapy. Nat Rev Neurosci 2004;5(10):782-92

    Article  PubMed  Google Scholar 

  252. Bryant JA, Finn RS, Slamon DJ, Cloughesy TF, Charles AC. EGF activates intracellular and intercellular calcium signaling by distinct pathways in tumor cells. Cancer Biol Ther 2004;3(12):1243-9

    PubMed  Google Scholar 

  253. Mischel PS, Nelson SF, Cloughesy TF. Molecular analysis of glioblastoma: pathway profiling and its implications for patient therapy. Cancer Biol Ther 2003;2(3):242-7

    PubMed  Google Scholar 

  254. Shai R, Shi T, Kremen TJ, Horvath S, Liau LM, Cloughesy TF, et al. Gene expression profiling identifies molecular subtypes of gliomas. Oncogene 2003;22(31):4918-23

    Article  PubMed  Google Scholar 

  255. Hilker R, Schweitzer K, Coburger S, Ghaemi M, Weisenbach S, Jacobs AH, et al. Nonlinear progression of Parkinson disease as determined by serial positron emission tomographic imaging of striatal fluorodopa F 18 activity. Arch Neurol 2005;62(3):378-82

    Article  PubMed  Google Scholar 

  256. Lowenstein PR. The case for immunosuppression in clinical gene transfer. Mol Ther 2005;12(2):185-6

    Article  PubMed  Google Scholar 

  257. Jacobs AH. PET in gliomas. In: Schlegel U, Weller M, Westphal M, editors. Neuroonkologie. Stuttgart: Thieme; 2003. p. 72-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Jacobs.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00259-005-1985-7

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jacobs, A.H., Winkler, A., Castro, M.G. et al. Human gene therapy and imaging in neurological diseases. Eur J Nucl Med Mol Imaging 32 (Suppl 2), S358–S383 (2005). https://doi.org/10.1007/s00259-005-1960-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-1960-3

Keywords

Navigation