Skip to main content

Advertisement

Log in

Cubilin and megalin in radiation-induced renal injury with labelled somatostatin analogues: are we just dealing with the kidney?

  • Editorial Commentary
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Melis M, Krenning EP, Bernard BF, Barone R, Visser TJ, de Jong M. Localisation and mechanism of renal retention of radiolabelled somatostatin analogues. Eur J Nucl Med Mol Imaging 2005;32. DOI 10.1007/s00259-005-1793-0

  2. Patel YC. Somatostatin and its receptor family. Front Neuroendocrinol 1999;20:157–98

    Article  PubMed  Google Scholar 

  3. Dasgupta P. Somatostatin analogues: multiple roles in cellular proliferation, neoplasia, and angiogenesis. Pharmacol Ther 2004;102:61–85

    Article  PubMed  Google Scholar 

  4. Turman MA, O’Dorisio MS, O’Dorisio TM, Apple CA, Albers AR. Somatostatin expression in human renal cortex and mesangial cells. Regul Pept 1997;68:15–21

    Article  PubMed  Google Scholar 

  5. Reubi JC, Horisberger U, Studer UE, Waser B, Laissue JA. Human kidney as target for somatostatin: high affinity receptors in tubules and vasa recta. J Clin Endocrinol Metab 1993;77:1323–8

    Article  PubMed  Google Scholar 

  6. Balster DA, O’Dorisio MS, Summers MA, Turman MA. Segmental expression of somatostatin receptor subtypes sst(1) and sst(2) in tubules and glomeruli of human kidney. Am J Physiol Renal Physiol 2001;280:F457–65

    PubMed  Google Scholar 

  7. Bates CM, Kegg H, Grady S. Expression of somatostatin receptors 1 and 2 in the adult mouse kidney. Regul Pept 2004;119:11–20

    Article  PubMed  Google Scholar 

  8. Bates CM, Kegg H, Grady S. Expression of somatostatin in the adult and developing mouse kidney. Kidney Int 2004;66:1785–93

    Article  PubMed  Google Scholar 

  9. Dalm VA, van Hagen PM, van Koetsveld PM, Achilefu S, Houtsmuller AB, Pols DH, et al. Expression of somatostatin, cortistatin, and somatostatin receptors in human monocytes, macrophages, and dendritic cells. Am J Physiol Endocrinol Metab 2003;285:E344–53

    PubMed  Google Scholar 

  10. Dalm VA, van Hagen PM, van Koetsveld PM, Langerak AW, van der Lely AJ, Lamberts SW, et al. Cortistatin rather than somatostatin as a potential endogenous ligand for somatostatin receptors in the human immune system. J Clin Endocrinol Metab 2003;88:270–6

    Article  PubMed  Google Scholar 

  11. Hannon JP, Nunn C, Stolz B, Bruns C, Weckbecker G, Lewis I, et al. Drug design at peptide receptors: somatostatin receptor ligands. J Mol Neurosci 2002;18:15–27

    Article  PubMed  Google Scholar 

  12. Spier AD, de Lecea L. Cortistatin: a member of the somatostatin neuropeptide family with distinct physiological functions. Brain Res Brain Res Rev 2000;33:228–41

    Article  PubMed  Google Scholar 

  13. Gottero C, Prodam F, Destefanis S, Benso A, Gauna C, Me E, et al. Cortistatin-17 and -14 exert the same endocrine activities as somatostatin in humans. Growth Horm IGF Res 2004;14:382–7

    Article  PubMed  Google Scholar 

  14. Li M, Yan S, Fisher WE, Chen C, Yao Q. New roles of a neuropeptide cortistatin in the immune system and cancer. World J Surg 2005;29:354–6

    Article  PubMed  Google Scholar 

  15. Liu Q, Cescato R, Dewi DA, Rivier J, Reubi JC, Schonbrunn A. Receptor signaling and endocytosis are differentially regulated by somatostatin analogs. Mol Pharmacol 2005;68:90–101

    PubMed  Google Scholar 

  16. Lundgren S, Carling T, Hjalm G, Juhlin C, Rastad J, Pihlgren U, et al. Tissue distribution of human gp330/megalin, a putative Ca(2+)-sensing protein. J Histochem Cytochem 1997;45:383–92

    PubMed  Google Scholar 

  17. Liu W, Yu WR, Carling T, Juhlin C, Rastad J, Ridefelt P, et al. Regulation of gp330/megalin expression by vitamins A and D. Eur J Clin Invest 1998;28:100–7

    Article  PubMed  Google Scholar 

  18. Zheng G, Marino’ M, Zhao J, McCluskey RT. Megalin (gp330): a putative endocytic receptor for thyroglobulin (Tg). Endocrinology 1998;139:1462–5

    Article  PubMed  Google Scholar 

  19. Oleinikov AV, Feliz BJ, Makker SP. A small N-terminal 60-kD fragment of gp600 (megalin), the major autoantigen of active Heymann nephritis, can induce a full-blown disease. J Am Soc Nephrol 2000;11:57–64

    PubMed  Google Scholar 

  20. Barth JL, Argraves WS. Cubilin and megalin: partners in lipoprotein and vitamin metabolism. Trends Cardiovasc Med 2001;11:26–31

    Article  PubMed  Google Scholar 

  21. Christensen EI, Birn H. Megalin and cubilin: synergistic endocytic receptors in renal proximal tubule. Am J Physiol Renal Physiol 2001;280:F562–73

    PubMed  Google Scholar 

  22. Marino M, Pinchera A, McCluskey RT, Chiovato L. Megalin in thyroid physiology and pathology. Thyroid 2001;11:47–56

    Article  PubMed  Google Scholar 

  23. Yammani RR, Seetharam S, Seetharam B. Cubilin and megalin expression and their interaction in the rat intestine: effect of thyroidectomy. Am J Physiol Endocrinol Metab 2001;281:E900–7

    PubMed  Google Scholar 

  24. Christensen EI, Birn H. Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 2002;3:256–66

    PubMed  Google Scholar 

  25. Kolleck I, Sinha P, Rustow B. Vitamin E as an antioxidant of the lung: mechanisms of vitamin E delivery to alveolar type II cells. Am J Respir Crit Care Med 2002;166:S62–6

    Article  PubMed  Google Scholar 

  26. Muller D, Nykjaer A, Willnow TE. From holoprosencephaly to osteopathology: role of multifunctional endocytic receptors in absorptive epithelia. Ann Med 2003;35:290–9

    Article  PubMed  Google Scholar 

  27. Barone R, Van Der Smissen P, Devuyst O, Beaujean V, Pauwels S, Courtoy PJ, et al. Endocytosis of the somatostatin analogue, octreotide, by the proximal tubule-derived opossum kidney (OK) cell line. Kidney Int 2005;67:969–76

    Article  PubMed  Google Scholar 

  28. Sengupta S, Harris CC. p53: traffic cop at the crossroads of DNA repair and recombination. Nat Rev Mol Cell Biol 2005;6:44–55

    Article  PubMed  Google Scholar 

  29. Nagai M, Meerloo T, Takeda T, Farquhar MG. The adaptor protein ARH escorts megalin to and through endosomes. Mol Biol Cell 2003;14:4984–96

    Article  PubMed  Google Scholar 

  30. Lisi S, Segnani C, Mattii L, Botta R, Marcocci C, Dolfi A, et al. Thyroid dysfunction in megalin deficient mice. Mol Cell Endocrinol 2005;236:43–7

    Article  PubMed  Google Scholar 

  31. Gabriel M, Froehlich F, Decristoforo C, Ensinger C, Donnemiller E, von Guggenberg E, et al. 99mTc-EDDA/HYNIC-TOC and 18F-FDG in thyroid cancer patients with negative 131I whole-body scans. Eur J Nucl Med Mol Imaging 2004;31:330–41

    Article  PubMed  Google Scholar 

  32. Boerman OC, Oyen WJ, Corstens FH. Between the Scylla and Charybdis of peptide radionuclide therapy: hitting the tumor and saving the kidney. Eur J Nucl Med 2001;28:1447–9

    Article  PubMed  Google Scholar 

  33. Kopecky M, Semecky V, Trejtnar F, Laznicek M, Laznickova A, Nachtigal P, et al. Analysis of accumulation of 99mTc-octreotide and 99mTc-EDDA/HYNIC-Tyr3-octreotide in the rat kidneys. Nucl Med Biol 2004;31:231–9

    Article  PubMed  Google Scholar 

  34. Konijnenberg MW. Is the renal dosimetry for [90Y-DOTA0,Tyr3]octreotide accurate enough to predict thresholds for individual patients? Cancer Biother Radiopharm 2003;18:619–25

    Article  PubMed  Google Scholar 

  35. Goldsmith SJ. Improving insight into radiobiology and radionuclide therapy. J Nucl Med 2004;45:1104–5

    PubMed  Google Scholar 

  36. Baum RP, Söldner J, Schmücking M, Niesen A. Radionuclide treatment (peptide receptor radiotherapy) of neuroendocrine tumors. Onkologe 2004;10:1098–110

    Article  Google Scholar 

  37. Barone R, Borson-Chazot F, Valkema R, Walrand S, Chauvin F, Gogou L, et al. Patient-specific dosimetry in predicting renal toxicity with 90Y-DOTATOC: relevance of kidney volume and dose rate in finding a dose-effect relationship. J Nucl Med 2005;46 Suppl 1:99S–106S

    PubMed  Google Scholar 

  38. Heyman SN, Reichman J, Brezis M. Pathophysiology of radiocontrast nephropathy: a role for medullary hypoxia. Invest Radiol 1999;34:685–91

    Article  PubMed  Google Scholar 

  39. Lindholt JS. Radiocontrast induced nephropathy. Eur J Vasc Endovasc Surg 2003;25:296–304

    Article  PubMed  Google Scholar 

  40. Rolleman EJ, Valkema R, de Jong M, Kooij PP, Krenning EP. Safe and effective inhibition of renal uptake of radiolabelled octreotide by a combination of lysine and arginine. Eur J Nucl Med Mol Imaging 2003;30:9–15

    Article  PubMed  Google Scholar 

  41. Lambert B, Cybulla M, Weiner SM, Van De Wiele C, Ham H, Dierckx RA, et al. Renal toxicity after radionuclide therapy. Radiat Res 2004;161:607–11

    PubMed  Google Scholar 

  42. Coleman CN, Stone HB, Moulder JE, Pellmar TC. Medicine. Modulation of radiation injury. Science 2004;304:693–4

    Article  PubMed  Google Scholar 

  43. Spitz DR, Azzam EI, Li JJ, Gius D. Metabolic oxidation/reduction reactions and cellular responses to ionizing radiation: a unifying concept in stress response biology. Cancer Metastasis Rev 2004;23:311–22

    Article  PubMed  Google Scholar 

  44. Kovacic P, Sacman A, Wu-Weis M. Nephrotoxins: widespread role of oxidative stress and electron transfer. Curr Med Chem 2002;9:823–47

    PubMed  Google Scholar 

  45. Robbins ME, Zhao W. Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol 2004;80:251–9

    Article  PubMed  Google Scholar 

  46. Robbins ME, Zhao W, Davis CS, Toyokuni S, Bonsib SM. Radiation-induced kidney injury: a role for chronic oxidative stress? Micron 2002;33:133–41

    Article  PubMed  Google Scholar 

  47. Moskovitz J, Stadtman ER. Selenium-deficient diet enhances protein oxidation and affects methionine sulfoxide reductase (MsrB) protein level in certain mouse tissues. Proc Natl Acad Sci U S A 2003;100:7486–90

    Article  PubMed  Google Scholar 

  48. Kryukov GV, Kumar RA, Koc A, Sun Z, Gladyshev VN. Selenoprotein R is a zinc-containing stereo-specific methionine sulfoxide reductase. Proc Natl Acad Sci U S A 2002;99:4245–50

    Article  PubMed  Google Scholar 

  49. Oberley TD, Verwiebe E, Zhong W, Kang SW, Rhee SG. Localization of the thioredoxin system in normal rat kidney. Free Radic Biol Med 2001;30:412–24

    Article  PubMed  Google Scholar 

  50. Ernst P. Review article: the role of inflammation in the pathogenesis of gastric cancer. Aliment Pharmacol Ther 1999;13 Suppl 1:13–8

    PubMed  Google Scholar 

  51. Riley PA. Free radicals in biology: oxidative stress and the effects of ionizing radiation. Int J Radiat Biol 1994;65:27–33

    PubMed  Google Scholar 

  52. Shin SJ, Yamada K, Sugisawa A, Saito K, Miyajima T, Umegaki K. Enhanced oxidative damage induced by total body irradiation in mice fed a low protein diet. Int J Radiat Biol 2002;78:425–32

    Article  PubMed  Google Scholar 

  53. Chu FF, Esworthy RS, Doroshow JH. Role of Se-dependent glutathione peroxidases in gastrointestinal inflammation and cancer. Free Radic Biol Med 2004;36:1481–95

    Article  PubMed  Google Scholar 

  54. Moncayo R, Moncayo H, Kapelari K. Nutritional treatment of incipient thyroid autoimmune disease. Influence of selenium supplementation on thyroid function and morphology in children and young adults. Clin Nutr 2005;24:530–1

    Article  PubMed  Google Scholar 

  55. Atkins HL, Som P. Growth-hormone and somatostatin effects on [75Se]selenomethionine uptake by the pancreas. J Nucl Med 1979;20:543–6

    PubMed  Google Scholar 

  56. Gabriel M, Decristoforo C, Donnemiller E, Ulmer H, Watfah RC, Mather SJ, et al. An intrapatient comparison of 99mTc-EDDA/HYNIC-TOC with 111In-DTPA-octreotide for diagnosis of somatostatin receptor-expressing tumors. J Nucl Med 2003;44:708–16

    PubMed  Google Scholar 

  57. Kainz H, Bale R, Donnemiller E, Gabriel M, Kovacs P, Decristoforo C, et al. Image fusion analysis of 99mTc-HYNIC-octreotide scintigraphy and CT/MRI in patients with thyroid-associated orbitopathy: the importance of the lacrimal gland. Eur J Nucl Med Mol Imaging 2003;30:1155–9

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Moncayo.

Additional information

This editorial commentary refers to the article http://dx.doi.org/10.1007/s00259-005-1793-0

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moncayo, R. Cubilin and megalin in radiation-induced renal injury with labelled somatostatin analogues: are we just dealing with the kidney?. Eur J Nucl Med Mol Imaging 32, 1131–1135 (2005). https://doi.org/10.1007/s00259-005-1885-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-005-1885-x

Keywords

Navigation