Skip to main content
Log in

Serial changes in BMIPP uptake in relation to thallium uptake in the rat myocardium after ischaemia

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Several clinical studies have shown that iodine-123 labelled 15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (BMIPP) uptake is often lower than the uptake of perfusion tracers in patients with ischaemic heart disease. However, BMIPP accumulation may not decrease during the acute phase of a stunned myocardium in patients with acute coronary syndrome. We evaluated serial changes in BMIPP and perfusion tracer uptake in the myocardium after ischaemia. We performed a 20-min left coronary artery occlusion followed by reperfusion in male Wister rats. One hour after the reperfusion, echocardiography was performed. Intravenous injection of iodine-125 labelled BMIPP and thallium-201 was performed 1 day (acute group) and 5 days (subacute group) after the operation. To determine the myocardial distribution of 125I-BMIPP and 201Tl, dual-tracer autoradiography was conducted. We identified regions of interest in the anterolateral wall as an area at risk and in the inferoseptum as a remote control area. The anterolateral wall/inferoseptum ratio (A/I ratio) was calculated to compare the distributions of 125I-BMIPP and 201Tl. Coronary occlusion induced hypokinesia in the anterolateral region 1 h after the reperfusion. The A/I ratio of 125I-BMIPP was significantly higher than that of 201Tl in the acute group (1.01±0.15 vs 0.80±0.23, P<0.001). On the other hand, there was no significant difference between the A/I ratios of 125I-BMIPP and 201Tl in the subacute group (0.88±0.18 vs 0.85±0.18). Two rats showed a significantly lower A/I ratio of 125I-BMIPP than 201Tl in the subacute phase. These data suggest that BMIPP uptake is preserved despite a decrease in perfusion in the acute phase after ischaemia. In the subacute phase, on the other hand, BMIPP uptake is similar to or even lower than thallium uptake. Since BMIPP uptake may change with time after ischaemia, careful interpretation of BMIPP uptake after ischaemia is required in a clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A, B.
Fig. 3A–C.
Fig. 4A, B.
Fig. 5.

Similar content being viewed by others

References

  1. Goodman MM, Kirsch G, Knapp FF Jr. Synthesis and evaluation of radioiodinated terminal p-iodophenyl-substituted α- and β-methyl-branched fatty acids. J Med Chem 1984; 27:390–397.

    CAS  PubMed  Google Scholar 

  2. Knapp FF Jr, Ambrose KR, Goodman MM. New radioiodinated methyl-branched fatty acids for cardiac studies. Eur J Nucl Med 1986; 12:S39–S44.

    CAS  PubMed  Google Scholar 

  3. Knapp FF Jr, Kropp J, Goodman MM, et al. The development of iodine-123-methyl-branched fatty acids and their applications in nuclear cardiology. Ann Nucl Med 1993; 7(Suppl II):S1–S14.

    Google Scholar 

  4. Tamaki N, Kawamoto M, Yonekura Y, et al. Regional metabolic abnormality in relation to perfusion and wall motion in patients with myocardial infarction: assessment with emission tomography using iodinated branched fatty acid analogue. J Nucl Med 1992; 33:659–667.

    CAS  PubMed  Google Scholar 

  5. Franken PR, De Geeter F, Dendale P, Demor D, Block P, Bossuyt A. Abnormal free fatty acid uptake in subacute myocardial infarction after coronary thrombolysis: correlation with wall motion and inotropic reserve. J Nucl Med 1994; 35:1758–1765.

    Google Scholar 

  6. Kawamoto M, Tamaki N, Yonekura Y, et al. Combined study with I-123 fatty acid and thallium-201 to assess ischemic myocardium: comparison with thallium redistribution and glucose metabolism. Ann Nucl Med 1994; 8:847–854.

    Google Scholar 

  7. De Geeter F, Franken PR, Knapp FF Jr, Bossuyt A. Relationship between flow and fatty acid metabolism in subacute myocardial infarction: a study by means of99mTc-sestamibi and 123I-β-methyl-iodo-phenyl pentadecanoic acid. Eur J Nucl Med 1994; 21:283–291.

    PubMed  Google Scholar 

  8. Furutani Y, Shiigi T, Nakamura Y, et al. Quantification of area at risk in acute myocardial infarction by tomographic imaging. J Nucl Med 1997; 38:1875–1882.

    CAS  Google Scholar 

  9. Hambye AS, Vervaet A, Dobbeleir A, Dendale P, Franken P. Prediction of functional outcome by quantification of sestamibi and BMIPP after acute myocardial infarction. Eur J Nucl Med 2000; 27:1494–1500.

    CAS  Google Scholar 

  10. Kawai Y, Tsukamoto E, Nozaki Y, Kishino K, Kohya T, Tamaki N. Use of123I-BMIPP single-photon emission tomography to estimate areas at risk following successful revascularization in patients with acute myocardial infarction. Eur J Nucl Med 1998; 25:1390–1395.

    Article  CAS  PubMed  Google Scholar 

  11. Ito K, Sugihara H, Kawasaki T, Katoh S, Azuma A, Nakagawa M. Dynamic changes in cardiac fatty acid metabolism in the stunned human myocardium. Ann Nucl Med 2001; 15:343–350.

    CAS  Google Scholar 

  12. Miller DD, Gill JB, Livni E, et al. Fatty acid analogue accumulation: a marker of myocyte viability in ischemic-reperfused myocardium. Circ Res 1988; 63:681–693.

    CAS  Google Scholar 

  13. Nishimura T, Sago M, Kihara K, et al. Fatty acid myocardial imaging using123I-β-methyl-iodophenyl pentadecanoic acid (BMIPP): comparison of myocardial perfusion and fatty acid utilization in canine myocardial infarction (occlusion and reperfusion model). Eur J Nucl Med 1989; 15:341–345.

    CAS  PubMed  Google Scholar 

  14. Hirai T, Nohara R, Ogoh S, et al. Serial evaluation of fatty acid metabolism in rats with myocardial infarction by pinhole SPECT. J Nucl Cardiol 2001; 8:472–481.

    Article  CAS  PubMed  Google Scholar 

  15. Bilheimer DW, Buja LM, Parkey RW, Bonte FJ, Willerson JT. Fatty acid accumulation and abnormal lipid deposition in peripheral and border zones of experimental myocardial infarcts. J Nucl Med 1978; 19:276–283.

    CAS  PubMed  Google Scholar 

  16. Straeter-Knowlen IM, Evanochko WT, den Hollander JA, et al.1H NMR spectroscopic imaging of myocardial triglycerides in excised dog hearts subjected to 24 hours of coronary occlusion. Circulation 1996; 93:1464–1470.

    CAS  Google Scholar 

  17. Christiansen K, Jensen PK. Membrane-bound lipid particles from beef heart. Biochim Biophys Acta 1972; 260:449–459.

    CAS  Google Scholar 

  18. Fujibayashi Y, Yonekura Y, Kawai K, et al. Basic studies on I-123-beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) for myocardial functional diagnosis: effect of beta-oxidation inhibitor. Jpn J Nucl Med 1988; 25:1131–1135.

    CAS  Google Scholar 

  19. Hosokawa R, Nohara R, Fujibayashi Y, et al. Myocardial kinetics of iodine-123-BMIPP in canine myocardium after regional ischemia and reperfusion: implications for clinical SPECT. J Nucl Med 1997; 38:1857–1863.

    CAS  PubMed  Google Scholar 

  20. Weber DA, Ivanovic M, Franceschi D, et al. Pinhole SPECT: an approach to in vivo high resolution SPECT imaging in small laboratory animals. J Nucl Med 1994; 35:342–348.

    CAS  Google Scholar 

  21. Yukihiro M, Inoue T, Iwasaki T, Tomiyoshi K, Erlandsson K, Endo K. Myocardial infarction in rats: high-resolution single-photon emission tomographic imaging with a pinhole collimator. Eur J Nucl Med 1996; 23:869–900.

    Google Scholar 

  22. Yamamichi Y, Kusuoka H, Morishita K, et al. Metabolism of iodine-123-BMIPP in perfused rat hearts. J Nucl Med 1995; 36:1043–1050.

    CAS  PubMed  Google Scholar 

  23. Kropp J, Eisenhut M, Ambrose KR, Knapp FF Jr, Franke WG. Pharmacokinetics and metabolism of the methyl-branched fatty acid (BMIPP) in animals and humans. J Nucl Med 1999; 40:1484–1491.

    CAS  Google Scholar 

  24. Morishita S, Kusuoka H, Yamamichi Y, Suzuki N, Kurami M, Nishimura T. Kinetics of radioiodinated species in subcellular fractions from rat hearts following administration of iodine-123-labelled 15-(p-iodophenyl)-3-(R,S)-methylpentadecanoic acid (123I-BMIPP). Eur J Nucl Med 1996; 23:383–389.

    CAS  PubMed  Google Scholar 

  25. Hale SL, Kloner RA. Effect of early coronary artery reperfusion on infarct development in a model of low collateral flow. Cardiovasc Res 1987; 21:668–673.

    CAS  Google Scholar 

  26. Yamashita N, Hoshida S, Taniguchi N, Kuzuya T, Hori M. Whole-body hyperthermia provides biphasic cardioprotection against ischemia/reperfusion injury in the rat. Circulation 1998; 98:1414–1421.

    CAS  Google Scholar 

  27. McNulty PH, Jagasia D, Cline GW, et al. Persistent changes in myocardial glucose metabolism in vivo during reperfusion of a limited-duration coronary occlusion. Circulation 2000; 101:917–922.

    CAS  PubMed  Google Scholar 

  28. McCall D, Zimmer LJ, Katz AM. Kinetics of thallium exchange in cultured rat myocardial cells. Circ Res 1985; 56:370–376.

    CAS  Google Scholar 

  29. Takahashi N, Reinhardt CP, Marcel R, Leppo JA. Myocardial uptake of99mTc-tetrofosmin, sestamibi, and 201Tl in a model of acute coronary reperfusion. Circulation 1996; 94:2605–2613.

    CAS  PubMed  Google Scholar 

  30. Fujiwara S, Takeishi Y, Atsumi H, Takahashi K, Tomoike H. Fatty acid metabolic imaging with iodine-123-BMIPP for the diagnosis of coronary artery disease. J Nucl Med 1997; 38:175–180.

    CAS  PubMed  Google Scholar 

  31. Tateno M, Tamaki N, Kudoh T, et al. Assessment of fatty acid uptake in patients with ischemic heart disease without myocardial infarction. J Nucl Med 1996; 37:1981–1985.

    CAS  PubMed  Google Scholar 

  32. Yamabe H, Fujiwara S, Rin K, et al. Resting123I-BMIPP scintigraphy for detection of organic coronary stenosis and therapeutic outcome in patients with chest pain. Ann Nucl Med 2000; 14:187–192.

    CAS  Google Scholar 

  33. Kawai Y, Tsukamoto E, Nozaki Y, Morita K, Sakurai M, Tamaki N. Significance of reduced uptake of iodinated fatty acid analogue for the evaluation of patients with acute chest pain. J Am Coll Cardiol 2001; 38:1888–1894.

    CAS  Google Scholar 

  34. Tamaki N, Morita K, Kuge Y, Tsukamoto E. The role of fatty acids in cardiac imaging. J Nucl Med 2000; 41:1525–1534.

    CAS  Google Scholar 

Download references

Acknowledgements

We thank Professors S. Nishi, K. Miyasaka and T. Ohnishi of the Central Institute of Isotope Science, Hokkaido University, for supporting this work. We also thank Nihon Medi-Physics Co. Ltd. (Tokyo, Japan) for the generous donation of 125I-BMIPP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagara Tamaki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Noriyasu, K., Mabuchi, M., Kuge, Y. et al. Serial changes in BMIPP uptake in relation to thallium uptake in the rat myocardium after ischaemia. Eur J Nucl Med Mol Imaging 30, 1644–1650 (2003). https://doi.org/10.1007/s00259-003-1305-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1305-z

Keywords

Navigation