Skip to main content

Advertisement

Log in

Liver uptake of free fatty acids in vivo in humans as determined with 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid and PET

  • Short Communication
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Increased delivery of circulating free fatty acids (FFA) to the liver has been implicated in the pathogenesis and progression of diabetes. The liver is inaccessible for direct measurement in humans in vivo. We measured liver FFA uptake with positron emission tomography (PET) and 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid ([18F]FTHA) in healthy men. We evaluated the use of graphical analysis and linear fit to describe uptake data over time, and compared the use of metabolite-corrected vs uncorrected input functions. Rapid accumulation of tracer in the liver was observed with time, leading to progressively higher tissue to blood radioactivity ratios. Using metabolite-corrected input function curves, linear fit to the data (r value) exceeded 0.99 in all subjects, during each fitting time frame. Values of liver FFA influx rate constant and uptake were 0.34±0.01 ml min−1 ml−1 and 0.20±0.02 µmol min−1 ml−1, respectively, and were minimally affected by the choice of the fitting interval. Expressed per unit mass, liver FFA uptake was ~50 times higher than that reported in skeletal muscle; in the whole organ, FFA uptake was twice as high as in skeletal muscles. The use of metabolite-uncorrected input functions significantly worsened the spread of data around the fitted line and led to a remarkable underestimation of liver FFA uptake at all time intervals. In conclusion, our data provide non-invasive quantification of hepatic FFA uptake in humans, showing the liver to handle a high FFA flux. [18F]FTHA-PET appears a valuable tool for the investigation of hepatic FFA turnover in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. DeFronzo RA. Lilly lecture 1987. The triumvirate: beta-cell, muscle, liver. a collusion responsible for NIDDM. Diabetes 1988; 37:667–687.

    CAS  PubMed  Google Scholar 

  2. McGarry JD. Dysregulation of fatty acid metabolism in the etiology of type 2 diabetes. Diabetes 2002; 51:7–18.

    CAS  PubMed  Google Scholar 

  3. Seppala-Lindroos A, Vehkavaara S, Hakkinen AM, Westerbacka J, Sovijarvi A, halavaara J, Yki-Jarvinen H. Fat accumulation in the liver is associated with defects in insulin suppression of glucose production and serum free fatty acids independent of obesity in normal men. J Clin Endocrinol Metab 2002; 87:3023–3028.

    PubMed  Google Scholar 

  4. Shah P, Vella A, Basu A, Basu R, Adkins A, Schwenk WF, Johnson CM, Nair KS, Jensen MD, Rizza R. Effects of free fatty acids and glycerol on splanchnic glucose metabolism and insulin extraction in nondiabetic humans. Diabetes 2002; 51:301–310.

    CAS  PubMed  Google Scholar 

  5. DeFronzo RA. Use of the splanchnic/hepatic balance technique in the study of glucose metabolism. Baillieres Clin Endocrinol Metab 1987; 1:837–862.

    CAS  PubMed  Google Scholar 

  6. Sidossis LS, Mittendorfer B, Chinkes D, Walser E, Wolfe RR. Effect of hyperglycemia-hyperinsulinemia on whole body and regional fatty acid metabolism. Am J Physiol Endocrinol Metab 1999; 276:E427–E434.

    CAS  Google Scholar 

  7. Hagenfeldt L, Wahren J, Pernow B, Raf L. Uptake of individual free fatty acids by skeletal muscle and liver in man. J Clin Invest 1972; 51:2324–2330.

    CAS  PubMed  Google Scholar 

  8. Turpeinen AK, Takala TO, Nuutila P, Axelin T, Luotolahti M, Haaparanta M, Bergman J, Hamalainen H, Iida H, Maki M, Uusitupa MIJ, Knuuti J. Impaired free fatty acid uptake in skeletal muscle but not in myocardium in patients with impaired glucose tolerance. Studies with PET and 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid. Diabetes 1999; 48:1245–1250.

    CAS  PubMed  Google Scholar 

  9. Van den Hoff J, Burchert W, Muller-Schauenburg W, Meyer GJ, Hundeshagen H. Accurate local blood flow measurements with dynamic PET: fast determination of input function delay and dispersion by multilinear minimization. J Nucl Med 1993; 34:1770–1777.

    PubMed  Google Scholar 

  10. Patlak CS, Blasberg RG. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. Generalizations. J Cereb Blood Flow Metab 1985; 5:584–590.

    CAS  PubMed  Google Scholar 

  11. Basso LV, Havel R. Hepatic metabolism of free fatty acids in normal and diabetic dogs. J Clin Invest 1970; 19:537–547.

    Google Scholar 

  12. Richardson PD, Withrington PG. Liver blood flow. I. Intrinsic and nervous control of liver blood flow. Gastroenterology 1981; 81:159–173.

    CAS  PubMed  Google Scholar 

  13. Richardson PD, Withrington PG. Liver blood flow. II. Effects of drugs and hormones on liver blood flow. Gastroenterology 1981; 81:356–375.

    CAS  PubMed  Google Scholar 

  14. Takala TO, Nuutila P, Pulkki K, Oikonen V, Gronroos T, Savunen T, Vahasilta T, Luotolahti M, Kallajoki M, Bergman J, Forsback S, Knuuti J. 14(R,S)-[18F]-fluoro-6-thia-heptadecanoic acid as a tracer of free fatty acid uptake and oxidation in myocardium and skeletal muscle. Eur J Nucl Med 2002; 29:1617–1622.

    Article  CAS  Google Scholar 

  15. Skrede S, Narce M, Bergseth S, Bremer J. The effects of alkylthioacetic acids (3-thia fatty acids) on fatty acid metabolism in isolated hepatocytes. Biochim Biophys Acta 1989; 1005:296–302.

    Article  CAS  PubMed  Google Scholar 

  16. Knust EJ, Kupfernagel C, Stocklin G. Long-chain F-18 fatty acids for the study of regional metabolism in heart and liver; odd-even effects of metabolism in mice. J Nucl Med 1979; 20:1170–1175.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia Iozzo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iozzo, P., Turpeinen, A.K., Takala, T. et al. Liver uptake of free fatty acids in vivo in humans as determined with 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid and PET. Eur J Nucl Med Mol Imaging 30, 1160–1164 (2003). https://doi.org/10.1007/s00259-003-1215-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-003-1215-0

Keywords

Navigation